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Abstract

The mixed dual finite element method has been applied successfully to the treatment of 3D
diffusion and simplified transport equations for Cartesian geometries. A specific solver
known as MINOS, based on this method, has been implemented in the CRONOS code
developed at the French Atomic Energy Commission (CEA). This solver produces very
fast calculations due to discretization on a Raviart-Thomas-Nedelec (RTN) finite element
basis, which generates well-structured and well-conditioned matrices. This method has
recently been extended to hexagonal geometries by preserving its main feature. Different
numerical approaches have been analyzed and compared and numerical results are
presented on a standard benchmark problem.

1 Introduction

The CRONOS code (Lautard, 1990) is the computer tool devoted to core computation in
the SAPHYR system. Within CRONOS, the MINOS solver is used to carry out fast
homogenized core calculations for rectangular geometry. The first version of the MINOS
solver (Lautard, 1993 and Lautard, 1994) was limited to the treatment of diffusion
equations in Cartesian geometry, and it was extended to solve simplified Py equations
(Baudron 2001, Lautard, 1999). More recently, the solver has been extended to treat kinetic
equations (Baudron, 2001). The latest improvement concerns hexagonal geometry and has
been made in the general context of quadrangular geometry (Schneider, 2000).

In neutronics, the conventional finite element approach to solving the diffusion equation is
to rewrite the problem in primal or hybrid primal variational form (Lewis, 1985, Palmiotti,
1993). The equation is then written using flux as the main unknown and the functional
reads-in gradient operator terms. This approach is well suited to performing calculations on
unstructured grids and also for parallel calculations. Nevertheless, we usually obtain
unstructured matrices that penalize the computing time of the iterative solver. In the dual
variational formulation, the functional is written taking current as the main unknown and
the functional reads-in divergence operator terms. This method is of standard use in
structural mechanics and also in fluid dynamics. In the particular case of rectangular
geometries, the Raviart-Thomas-Nedelec finite element family (Raviart, 1977) produces
nice structured sparse linear systems. A specific block Gauss-Seidel method on the three



components of the current vector has been implemented. This method can be viewed as an
alternating direction method and is rapidly converging. Contrary to the primal
approximation, flux can be discontinuous at the element interfaces. This gives more
flexibility for following the large variation in flux level which is located between uranium
and MOX assemblies in the LWR reactor devoted to fuel recycling. The solver has been
coded to reach convergence either by refining the mesh size (h-convergence) or by
increasing the degree of the element (p-convergence).

The good results which have been obtained with the Cartesian solver encourage us to
extend its capabilities to hexagonal geometries, keeping the same powerful iterative
algorithm. Unfortunately, its efficient numerical implementation is not straightforward.
Most of the orthogonality properties of the Cartesian RTN bases are lost in a hexagonal
situation. For this reason, several possibilities have been investigated, depending on how
the hexagon is split into elementary sub-domains and what transformation is used from a
reference element. The first idea has been to divide the hexagons into 6 triangles and to
extend the RTN bases to equilateral triangles (Brezzi, 1991). A prototype code has shown
that this method is not efficient, mainly because the iterative procedure requires double
sweeping of the nodes for each of the 3 main axes of the geometry.

The recent works of Chao and Tsoulfanidis (Chao, 1995) on a nodal solver using a
conformal mapping encourage us to extend this method to mixed dual finite elements.
Unfortunately, this method has been rejected due to difficulties in meeting the interface
boundary conditions. Another possibility is to extend the method proposed by Hennart
Mund and Del-Valle (Hennart, 1997). They split a hexagon into four trapezoids and use a
bilinear transformation of the trapezoids into rectangles. Contrary to Chao’s method, the
mapping is no longer conformal and the diffusion operator is no longer preserved. These
methods have been extended to the mixed dual method satisfactorily. The main
disadvantage is that it is complex to divide the trapezoid into smaller elements, thus
achieving mesh convergence.

Finally, we have experimented with two new approaches consisting in splitting into three
lozenges. The lozenges are transformed into rectangles by either affine mapping or
conformal mapping. The advantage here is that each lozenge can be easily split into smaller
lozenges, so there is no difficulty in obtaining convergence in space. By using RTN
elements, we obtain well-structured matrices. Another advantage of this method is that it
preserves the fundamental symmetries of the hexagonal geometry.

The paper is divided into 7 chapters. First, we review the standard mixed dual formulation
of the diffusion operator, then we present the general framework of the geometrical
transformations of the plane applied to the mixed dual variational formulation. The next
chapter is a brief description of the existing Cartesian solver, and the main part of the paper
is a description of the various possibilities we have explored for the hexagonal geometry.
The following chapter is devoted to our recent work on the treatment of pin-by-pin
hexagonal geometries. The last chapter describes a numerical application and a comparison
of the different solutions on a standard Benchmark.

2 Themixed dual variational formulation

First and for the sake of simplicity, we consider the diffusion equation. This equation
couples scalar flux ¢ with current p; in each energy group, we have:
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By splitting the boundary into three parts I 0, O, =K and by denoting [ the

monoenergetic albedo coefficient ( S5 D]—l ,+ 1[ ), the boundary conditions can be written in
a general form:

p=0 on [, (Dirichlet)
p-n=0 onl, (Neuman) (2)
PA=1p (r=y1) onl; (Robin)

By projecting Eq. (1) and using the Green formula on the second equation, we get the weak
mixed dual formulation; find ( D, {p) UH,r, (a’iv, Q) x [’ (Q) such that:

[D7pgax-[@Dgax+ | %( pi)Gi)dy=0  0GOH, (divQ)
Q Q M3

(3)
—ji.ﬁwdx—jz(pwdx:—jswdx Ow0*(Q)
Q Q Q

where H, . (div,Q)={ pO[2@] : D.p0IA(Q) and pii =00nT,}

One advantage of the dual method is that the discontinuity conditions (between fluxes at
interfaces) can be introduced in a natural way into the functional subspaces (non-essential
conditions) (Lautard, 1993).

2.1 General framework on arbitrary triangulation

Finite element discrete spaces are always associated with triangulation over the
computational domain. The triangulation is composed of the union of polyhedra which can
be of arbitrary shape. At all events, these arbitrary elements K are obtained as an image by
a mapping Fy of a reference element K . For instance, if the domain consists of the union

of quadrilaterals (in 2D), the reference element can be the unit square. In this chapter, our
intention is to have another point of view on the finite element problem by considering the
problem as it can be written in the reference domain by the reciprocal of all the elementary
mappings Fy . Our intention is thus to build a new reference variational problem defined
on the reference domain.

Let Q= (JK be a triangulation defined on the computational domain, and we denote by
KOT;,

G the global mapping induced by the inverse of union of all elementary element mappings
G(x)=F¢'(x) if xOK )

It can easily be shown that G defines a mapping from the computational domain into the

reference domain Q = G(ﬁ).



In order to define a new variational mixed dual problem in the reference domain, and the
associated functional spaces, we have to first introduce local isomorphisms on each of the

two fundamental spaces L* (K ) and H (dz'v,K )
In the sequel for each element K, we will denote by DF = DF(%) the Jacobian matrix (for
simplicity, we will drop the index K from now on), by J =J (fc) = |det (DF )| the Jacobian

and by J, J =J ‘ DF ﬁ‘ the surface Jacobian (f;' being the unit outer normal
vector). We also suppose afterwards that the local transformations are C'-diffeomorphisms.
2.1.1 Local isomorphism of functional spaces

We first have to define two different isomorphisms for the scalar and vector functions.
First, for all function (2: K - R, we associate the function ¢=F (&) K - R defined by:

p=goF" (5)
Application F defines an isomorphism from H'(K) to H'(K).
A similar transformation is not so straightforward for the vector space H (div,K ) In fact,
the transformation, which, for a vectorial function 51% - Rd, associates the vectorial
function ¢ = qi o F':K - R, is not an isomorphism from H (div, K) to H(div,K). The

adequate isomorphism has been used by Thomas and is known in the literature as the Piola
transformation (Brezzi 1995).

At each vector function, 5;1& ~ R“, we associate a new vector by:
_ A\_ 1 A -
:G(q)zj(DF)qu 'k - R (6)
Moreover, we have the following identity:

Oy 012(K),06 0 H(div,K) jdiqu//dx = jdivéwdfc (7)
K K

The two previous isomorphisms are not enough to write the reference mixed dual
variational problem. We also have to define another isomorphism which operates on the
trace space of the currents.

The normal trace of the currents belongs in the space H T2 (0K) (the dual space of
HY 2(0K)). In fact, the isomorphism on H 2 (0K) is induced by the isomorphism G

using the divergence theorem. At every function f1" : H /2 (6[% ) - R, we associate a new
function defined by:

U G(ﬂ*)——y «F1.0k - R ®)

Furthermore, we have the following duality identity in the trace spaces:

e 4 Y N
<G(lu ),,UOF >H_1/2(6K),H1/2(0K) —</J "U>H_1/2(6K),Hl/2(aK) (9)



2.1.2  The reference mixed dual variational formulation

The previous isomorphisms are defined locally on each of the elements. The question now
is: how can this local isomorphism be extended to global spaces L (Q) and H (div, Q) ?

This can be done by writing the transmission condition on the element interfaces. For
instance, if we look at the solution p JH (div,Q), it means that p.n is continuous through

the interfaces. From the isomorphism G defined previously, we deduce that 1 f)ﬁ should

n

be continuous in the reference geometry. By denoting [, = UG(OK ), we obtain the two
oK,

global spaces on the reference domain (for flux and current):
A ~ A A2 Y 1 22 2a ~
I[*(Q) and w, £ Q)= {q g% DH(div,K);J—q.n continuous ; g.n =0 on Fz}

It’s important to note that most of the finite elements are such that the transformation F
leads to a Jacobian J, which is continuous through the element interfaces, thus the

1 22 . . . . .o fogay
continuity condition of — p.n is equivalent to the continuity condition of p.n and thus,

n

the space WO £ (f)) is identical to space H £ (div, f)) . Using a change of variable and the

previous local isomorphisms, the variational formulation can be written in the reference
geometry:

Find (p,@) OW, ¢, (Q)x1*(Q) such that:

1 AL A A Aon 1 5.1)(G.ii N A A A
> {—j(MKp).qu—jgoD.qu}+ > —j%dyzo DGO, . (Q)
D, J A I J E
KDTh K K K aKnF3 K 0K n
(10)
> {—ji.ﬁwdf—z’fj(bw,(dx}: > {—J.S([/Jdec} D@ O02(9)
Koy (g K K, | K
With: M, :JL(DFK ) DF, (11)

K

Finally, by giving a partition of the domain and a transformation F defined on each sub-
domain, the problem is reduced to calculation of matrix M and the two Jacobians J and
J,.

2.2 Mixed methods over convex quadrilaterals

In this chapter we shall introduce the RTN finite element family which is the most
conventional approximation of H (div) for rectangular geometry. For the sake of

simplicity, we consider below the 2D case only, thus the reference element is [0 , 1] ><[0 , 1] .

The flux which belongs in L (K ) is approximated in O, (1% ), while the current which
belongs in H(div,K) is represented in D, (I%) = [Qk’k_1 (I%) X{d] H |{ }) X1k (I%)],



thus the " component of the current belongs in the polynomial space of degree k for the
variable associated with direction d and degree k-1 for the others.
In order to minimize the non zero terms of the matrices, it is useful to choose an orthogonal

basis of the O, (K ) space. This can be done via products of 1D Lagrange polynomials

where the Lagrange nodes are located at the Gauss-Legendre points (Lautard, 1993).
The discrete spaces induced by the RTN finite elements R7,_, on the computational

domain triangulated by quadrilaterals are:
Vi =, 0L (@): o F DO, 150 (R) DK OT, (12)
Wi ={d, 0H, ., (div,Q):J (DF)"G,,; e FOD,(K) OKOT, } (13)

It can be seen that spaces V,* and W, are not necessarily piecewise polynomials. This
depends on the choice of the mapping F.
The discrete problem consists in finding functions ( Dy P ) Ow} xV} such that:

1
z oo Dp-4,dx — J.@,dlvqhdx+— I(ph )(qhn)dy =0 thDWh
KOTy, K g Tk 0K Nl
(14)
j div p, Y, dx — % j o, dx = ISwhdx Oy, OV}
KErTh KDTh

Assuming that F is a C'-difféomorphism, the equivalent problem in the reference geometry
is:
Find ( fyh , @) [ th X I}hk such that:

Z J.(MKph) qydx = J.@, 0.4, di+— J. by n)(qh n)dy =0 Og, 0wy
K0Ty, K Tk 0K Ty (15)
{ [O.5, @, di -2 j o, Jde} = {— | Sthde} O¢, OV}
KOT, | % Kom, | %
where:
={¢, 0@, 4 00,141 (K) DROT, ) (16)

A

th :{ é’h DLz(Q)d :éh/k DDk(I%) ;J%éh.nk continuous ; (?hﬁ]( =0on fz} (17)
(13 1
J_K

th , this condition can be forced via Lagrange multipliers (mixed hybrid dual

In the case where the condition th ﬁK continuous” is difficult to fulfil in the space

formulation).



3 Thecase of rectangular geometry

In rectangular geometry, the RTN elements have the interesting property of producing
sparse matrices with coupling terms oriented only along the axis. This property is a
consequence of the elementary mappings which are homothety (the matrix M is thus
diagonal). Therefore the orthogonal property of the basis is kept in the computational
domain.

3.1 The matrix system

The unknowns are ordered so that the x, y and z components of current unknown are

numbered first and the unknowns corresponding to the flux afterwards. After some

mathematical manipulations, we obtain the following system:
_Ax 0 0 B Dy 0

0 —Ay 0 B Dy _ 0

0 0 -4, B.|p. 0

S

Bl B Bl T|¢

=

<

(18)

B, (d =x,y,z) is a rectangular matrix coupling the flux and the current components.

These matrices can be reduced to ‘difference’ matrices by a particular choice of the
polynomial bases of the current. Also if an orthogonal basis is chosen on the flux basis, 4,

are block diagonal matrices and 7 is a diagonal matrix.

It has been established numerically that using reduced integration instead of exact
integration can improve the discrete solution. This property is linked to what is known as a
super-convergence property. The best choice is a Gaussian quadrature of an order below
the one which gives an exact integration (Order 2k +1 for RTN elements of degree k).

3.2 The iterative algorithm

In order to obtain a positive definite matrix, the flux is substituted into the current
equations (this is very easy because 7 is diagonal). We obtain the current equation below:

/4 BT'Bl BT'BI\(p,\ (BI'S

X

BT"'B, W, BT'Bl|lp, |=|BTS (19)

B.T™'B] B,T™'B] W, p.) \BT'S

z

where W, = A, +B,T"'B] ;d=x,youz

Using the directional leakage J, = BdT p,, we perform a block Gauss-Seidel algorithm,
each block corresponding to one of the three components of the current vectors (Lautard,
1993). This algorithm can be viewed as an alternating direction sweep. If we consider a
direction d, our particular choice of the RTN basis produces in the graph of W, only
connection oriented along the d axis. If the nodes are numbered along direction d first, the
matrix W, becomes block diagonal (each block being associated to a line of nodes), thus
resolution can be obtained very effectively on vector computers, because each of the

subsystems can be solved simultaneously. At the end of the sweep, the even flux is updated
and used to recalculate a new source.



4 Thetreatment of hexagonal geometry

We give a reminder here of the method suggested by Chao and Tsoulfanidis (1995) for
nodal approximation. The idea was to split the hexagon into 4 trapezes and use a conformal
mapping from a trapezoid to a rectangle. In the context of mixed methods, the main
difficulty lies in the fact that while the transformation is a conformal mapping on each
trapezoid separately, it is not conformal on the whole domain. At an oblique interface of
two trapezoids, the Jacobian is discontinuous. Moreover, a point on an interface has two
different images according to the hexagon being considered (Lautard, 1999). These
transmission conditions are difficult to be fulfil in the discrete polynomial space. The best
solution is therefore to introduce Lagrange multipliers and then to use a mixed hybrid dual
finite element approximation. All of this makes this method very complicated to implement
in the MINOS rectangular solver.

We now go on to present three methods which were motivated by the Chao method. We
restrict our presentation to 2D since it can be extended to three dimensions can be done
without difficulty. The first method consists in splitting the hexagon into 4 trapezoids and
using a bilinear mapping on each trapezoid as proposed by Hennart and Mund (1997) in the
context of a nodal method. The next two methods are new approaches and consist in
splitting the hexagon into 3 lozenges, using either an affine mapping or a conformal
mapping from the lozenges to a rectangle domain. The main advantage here is that each
lozenge can be easily split into smaller lozenges, so there is no difficulty in obtaining
convergence in space. Another advantage is that this splitting preserves the fundamental
symmetries of the hexagonal geometry.

4.1 Splitting into trapezoids with bilinear mapping (TBI)

In this method, we split a hexagon into 4 trapezoids. By transforming each trapezoid into a
rectangle, we obtain a geometry which can be directly treated by the rectangular solver by
sweeping of the two rectangular directions x and y (Figure 1). This is a distinct advantage
for fast implementation in the MINOS solver.

y/\ y A
SN
F L
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] B NN
¢ <~ X
Reference geometry Calculation geometry

Figure 1 — Hexagonal geometry with splitting into trapezes

If we consider the right upper quarter trapezoid, the coordinate transformation, the
Jacobian matrix and the Jacobian read:

A n X 1 0 2
x\x, A 2-
(A y)j 2, 1| DF= 2-%|  J=ldet(DF)| ="
»(£.5)

b 2-k
NERE 5 B 3

F(fc,ﬁ){



The matrix coupling reads:

L (39
M =—DF DF:T —% Y (20)
J 3 -5 2-3

This transformation nevertheless has the disadvantage of producing cross-derivatives in the
transformed operator because the matrix M is full.

By replacing M and J in the discrete form, we obtain the equation associated with the TBI
(Trapeze and Bllinear) transformation. Moreover, the calculation of J, shows that it stays
constant and continuous along the different edges, thus the transmission conditions
associated with the transformed operator correspond to the continuity of the normal trace
and the mixed dual approximation applies without Lagrange multipliers.

Therefore, we can use the same iterative algorithm as the one in the MINOS solver. The
only difference is that at each iteration, we have to add a contribution to the source term
coming from the transverse coupling.

-1 pT -1
Wj ) B.T7B] (P _ BxT_lS B oT Cu )\ Ps on
B,T7'B! W, py) \BT7S) (Cy 0 J{p,

where C,, is the matrix coupling the components of the current.

This method has been implemented in MINOS and is satisfactory, the main disadvantage is
that we cannot divide the trapezoid into smaller trapezoidal elements and thus perform a
mesh convergence.

4.2 Splitting into lozenges

The main feature of splitting into lozenges is that two elements adjacent to a third
element K can be adjacent. This property implies that the reference geometry formed by
square elements does not form a pavement of the plane. In fact, the reference geometry can

be viewed as a polyedric surface in R?; in the 2D plane, we can just have a projected view
(Figure 2). In this figure, the elements are connected along lines that we denote by u, v and
w. The natural symmetry of the hexagonal geometry is thus conserved.

v

<>

A

Projected reference geometry Computational geometry

Figure 2 — Sweeping directions on hexagonal geometry with lozenges



4.2.1 Affine mapping on lozenges (LAF)

If we take lozenge U (Figure 2) of side R as an example, we easily obtain:

FU@,@:("@”}E(W’%‘1)J ; DFU=5(6 OJ 22)

x(%7)) 2\ (x+25-1) 211 2

The other mappings derive from the previous mapping by rotations (277/3 for lozenge V'
and 471/3 for lozenge W). The Jacobian and the matrix M are the same for each lozenge
and can be expressed thus:

J=R? 3 12!
=R —and M =— (23)
2 3l o2

The surface Jacobian J, is equal to the ratio between the length of the side of the reference
square and the length of the side of its image, thus J, = R, and remains constant and

continuous through the interfaces. The space Vf/O £ (div, f)) is thus identical to

H 0 (div, fl) and the RTN discrete spaces can be used as in the rectangular geometry.

Since matrix M is constant in space, the coupling terms between currents are easy to
compute. By eliminating the flux unknowns, we obtain a new matrix system on the current
components:

w, B,T™'B B, T7'Bl\(p B,T”'S 0o C, Cl\p,

u w uy

B,T'B! w, BT7'Bl || p, |=|B,T'S|-|CL 0o C,.lp| @

v vw

B,T"'B B,TT'Bl W r.) \B, TS| |C,, ¢ 0 )\p,

w wu

N

where W, = A4, +B,T"'B} ;d =u, v, w

The iterative procedure is close to that for the rectangular case, the only exception being
that we have three sweeping directions and a supplementary iteration to take in account the
coupling terms between the current components. One of the advantages of this method is
that it is easy to reduce the space meshing by subdividing each lozenge into smaller
lozenges. This is shown in Figure 3.

Sy

Figure 3 — Different ways of splitting up a hexagon

4.2.2  Conformal mapping (LSC)

A third method can be carried out by using conformal mapping of the unite square into the
lozenge. For this, we use the Schwarz-Christoffel transformation (Marukevitch, 1967). The
Schwarz-Christoffel transformation is a particular conformal mapping which maps the half
complex upper plane into an arbitrary convex n-gone; the general expression reads:



T(r)= C'rf(t—al)el_l...(t—an)e”_la’t oCt (25)
0

where C is a positive constant, a, <...<a, OR are constants which depend on the position
of the vertex (n =4 and @, =—k',a, =-1,a; =1, a, =k' for a symmetric quadrangular)
and 0,77 are the angles of the polygon (0, =0, =60, =0, =1/2) for a square and
0, =0, =1/3, 6, =0, =2/3 for a lozenge). Therefore the conformal mapping F from the
lozenge into a rectangle is the composition of two conformal mappings.

After some mathematical developments, we obtain k' =3 + 242 .
The Jacobian J, J, and the matrix M read:
1
- (r+k')3
L(r) ;rDC+ , J, =JJ and M = Identity

J(r) =0,8972892 e (k)

The complex variable 7 is expressed in terms of elliptic function by » = sn(x + i, k'?).

The Jacobian is space-dependent and has singularities at the vertices corresponding to the
acute angles of the lozenge. In this case, we have extended the variational formulation by
using weighted Sobolev spaces (Schneider, 2000).

It can be observed that J, is continuous and we have no jump in contour lines at these

interfaces as we did with conformal mapping on trapezes. Thus, the space Wo,rz (f))

corresponds to the space Hr, (div, f)). As a result, the standard mixed dual variational

formulation applies without difficulty. Nevertheless, the property (J, continuous through

the interfaces) is lost if the partitions of a hexagon are made as shown in Figure 3. The only
possible refining is a 2% 2 as shown in Figure 4.

Figure 4 — 2x2 partition associated with conformal mapping

Finally, the matrix system is slightly simpler than that obtained with affine transformation
since we do not have the coupling transverse matrices C (Eq. (24)). The difficulty arises
because J is space-dependent and is not expressed as a tensorial product of 1D functions,
thus 7 is no longer a diagonal matrix but a block diagonal matrix. The fill in of the matrix
T produces a fill in of the matrices W, . To avoid this difficulty, we use a Gauss-Legendre

quadrature formula to compute the 7 entries.

5 Extension to pin-by-pin calculation

We have described a numerical method which uses discretization based on repetitive
hexagons. This geometric configuration is well suited to homogenized problems where the
entire assembly has been homogenized. To be more exhaustive, we have to examine the



configuration produced by pin-by-pin homogenization. In this case, as shown in Figure 5,
we have to take into account the inter assembly region, where the regular space meshing is
slightly destroyed due to the presence of the assembly boxes. The homogenized pin-by-pin
core configuration is represented by the dotted lines in Figure 5. As can be shown, two
supplementary element shapes add to the standard regular hexagons (a,a,a,a,a,a). They are
symbolized by the coding (a,b,a,b,a,b) and (a,a,b,a,a,b). Extension of the methods described
in Section 4 has been studied recently and this extension will be implemented soon in the
MINOS solver.

(a,b,a,b,a,b)

(a,a,b,a,a,b)

Figure 5 — Unstructured hexagonal geometry

The LAF and TBI methods can be extended to this pin-by-pin calculation without
difficulty, unlike the LSC method. As a matter of fact, the conformal mapping produces
jumps of the Jacobian at the interfaces, which are impossible to take into account. The
different splittings of the elements are given in Figure 6 for the TBI method and Figure 7
for the LAF method. It can be seen that the TBI method needs the construction of 5 new
different elements (which differ by their affine mapping), whereas the LAF method needs
only 2 new different elements.
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Figure 6 — Finite element mesh for the TBI method and new finite elements

9

Splitting of hexagons (a,a,b,a,a,b)

O

Q7

07
OH
A\,
-'f‘)"

>
%

7

<K

Splitting of hexagons (a,b,a,b,a,b)

Figure 7 — Finite element mesh for the LAF method and new finite elements

6 Numerical application

The previous methods have been compared on the two-group IAEA benchmark problem
extended to hexagonal geometry (Hennart, 1997). We describe here only the results of the
case with radial reflector included and an albedo boundary condition on the outer surfaces
7 =0.5. The other three configurations give similar results (Schneider, 2000). The core
map and the cross-sections are given in Figure 8.

Material 1 2 3 4
D, 1.5 1.5 1.5 1.5
D, 0.4 0.4 0.4 0.4

DI DI 0.03 | 0.03 0.03 0.04
P2 0.08 | 0.085 | 0.13 0.01
2, 0.02 | 0.02 0.02 0.04
VZ 1y 0 0 0 0
VZ /) 0.135( 0.135 | 0.135 0

Figure 8 — Configuration of the modified IAEA 2D Hexagonal Benchmark (with reflector)

Table 1 gives the discrepancy with respect to the reference of the k,; (in bold) and the

computing time (in italics). The columns correspond to various mesh sizes (when it’s
possible) and the lines to various degrees.

As shown, the TBI and LAF methods converge correctly. The TBI method converges
slightly better than the LAF method (in degrees) but is more time-consuming. The results
obtained with the LAF method show that increasing the degree of approximation is more
efficient than reducing the mesh size (in terms of computing time). Another observation is
that the LSC method converges slowly. This is probably due to the singularity of the
Jacobian which leads to a slowly converging numerical quadrature.



Mesh TBI LAF LAF LAF LSC LSC

Degrod MI MI M2 M3 MI M2
twro) (| 0% || de | ol | g || ae | o
2 (RT1) 0.-?3 (;,19 7 1.(())8 3.(())3 01?5 -1%?2
3 (RT2) 136 0._;9 3.?99 12915 (3.35%1 ;.1725
4 (RT3) 327 1.%0 10992 31(.)90 21()28 21-.193

Table 1 — Error € (in pcm) and computing time ¢ (in seconds on HP-B1000 W.S.)
for the modified IAEA 2D Hexagonal Benchmark. £ =10° (ke.z‘f - ke’;f ), (k;;f =1.00551)

Next, we compared the results of our old method used in CRONOS and based on primal
finite elements (PRIAM). Table 2 gives the power distribution obtained by PRIAM with a
cubic finite element and a mesh 2 for space discretization. This calculation has been taken
as a reference. Table 3 gives the assembly power density for the 3 MINOS methods with
respect to the CRONOS reference calculation. As shown, the three methods give good
results, those obtained with the LAF method being slightly better.

0.640 | 0.803 | 1.088

0.448 | 0.994

TBI method (RT2)
LAF method (RT1-M2)
LSC method (RT6-M1)

+0.03 | +0.01

Table 3 — Absolute errors in % of the power density



The next table (Table 4) shows the speed-up achieved with the new MINOS methods with
respect to the standard CRONOS calculations based on primal finite elements. The
CRONOS calculations were carried out with various degrees and mesh sizes. The MINOS
calculation is the one which gives about the same error on the k,, as CRONOS. As shown,

we get a factor greater than 10 in all the calculations.

TypeE.F. ) Parabolic-Mesh2 | Parabolic-Mesh3 Cubic-Mesh2
(error with k;;{ ) (5 pem) (1 pcm) (reference)
RT1-Meshl (9 pcm) 23
LAF RT2-Meshl (1 pcm) 26 33
RT1-Mesh2 (reference) 16 21
RT1-Meshl (4 pcm 12
TBI (4 pem)
RT2-Meshl (reference) 13 17

Table 4 — Computing time ratio between CRONOS, LAF and TBI for equivalent £, error

7 Conclusion

For Cartesian geometry and for the treatment of the diffusion equation, among the different
finite element methods, the mixed dual approximation using Raviart-Thomas-Nedelec
elements gives fast results with good vectorization. In this paper, we have introduced the
general framework of its extension to quadrangular unstructured geometry. This general
context has been applied for the treatment of regular hexagonal geometry. Different ways
of splitting the hexagons and different elementary mappings have been examined. The
numerical results show that splitting the hexagon into three lozenges and using an affine
mapping gives better results. A gain of a factor of about 20 has been achieved with respect
to the conventional finite elements. Moreover, this method can be easily extended to
perform pin-by-pin calculations. Nevertheless, splitting into trapezes has the advantage of
being rapidly implemented in the existing rectangular solver. These good results encourage
us to pursue the work and extend this method for the treatment of the transport SPN
calculations on arbitrary quadrangular unstructured meshes.
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