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Abstract 
The mixed dual finite element method has been applied successfully to the treatment of 3D 
diffusion and simplified transport equations for Cartesian geometries. A specific solver 
known as MINOS, based on this method, has been implemented in the CRONOS code 
developed at the French Atomic Energy Commission (CEA). This solver produces very 
fast calculations due to discretization on a Raviart-Thomas-Nedelec (RTN) finite element 
basis, which generates well-structured and well-conditioned matrices. This method has 
recently been extended to hexagonal geometries by preserving its main feature. Different 
numerical approaches have been analyzed and compared and numerical results are 
presented on a standard benchmark problem. 

1 Introduction 
The CRONOS code (Lautard, 1990) is the computer tool devoted to core computation in 
the SAPHYR system. Within CRONOS, the MINOS solver is used to carry out fast 
homogenized core calculations for rectangular geometry. The first version of the MINOS 
solver (Lautard, 1993 and Lautard, 1994) was limited to the treatment of diffusion 
equations in Cartesian geometry, and it was extended to solve simplified PN equations 
(Baudron 2001, Lautard, 1999). More recently, the solver has been extended to treat kinetic 
equations (Baudron, 2001). The latest improvement concerns hexagonal geometry and has 
been made in the general context of quadrangular geometry (Schneider, 2000). 
In neutronics, the conventional finite element approach to solving the diffusion equation is 
to rewrite the problem in primal or hybrid primal variational form (Lewis, 1985, Palmiotti, 
1993). The equation is then written using flux as the main unknown and the functional 
reads-in gradient operator terms. This approach is well suited to performing calculations on 
unstructured grids and also for parallel calculations. Nevertheless, we usually obtain 
unstructured matrices that penalize the computing time of the iterative solver. In the dual 
variational formulation, the functional is written taking current as the main unknown and 
the functional reads-in divergence operator terms. This method is of standard use in 
structural mechanics and also in fluid dynamics. In the particular case of rectangular 
geometries, the Raviart-Thomas-Nedelec finite element family (Raviart, 1977) produces 
nice structured sparse linear systems. A specific block Gauss-Seidel method on the three 



 

 

components of the current vector has been implemented. This method can be viewed as an 
alternating direction method and is rapidly converging. Contrary to the primal 
approximation, flux can be discontinuous at the element interfaces. This gives more 
flexibility for following the large variation in flux level which is located between uranium 
and MOX assemblies in the LWR reactor devoted to fuel recycling. The solver has been 
coded to reach convergence either by refining the mesh size (h-convergence) or by 
increasing the degree of the element (p-convergence). 
The good results which have been obtained with the Cartesian solver encourage us to 
extend its capabilities to hexagonal geometries, keeping the same powerful iterative 
algorithm. Unfortunately, its efficient numerical implementation is not straightforward. 
Most of the orthogonality properties of the Cartesian RTN bases are lost in a hexagonal 
situation. For this reason, several possibilities have been investigated, depending on how 
the hexagon is split into elementary sub-domains and what transformation is used from a 
reference element. The first idea has been to divide the hexagons into 6 triangles and to 
extend the RTN bases to equilateral triangles (Brezzi, 1991). A prototype code has shown 
that this method is not efficient, mainly because the iterative procedure requires double 
sweeping of the nodes for each of the 3 main axes of the geometry. 
The recent works of Chao and Tsoulfanidis (Chao, 1995) on a nodal solver using a 
conformal mapping encourage us to extend this method to mixed dual finite elements. 
Unfortunately, this method has been rejected due to difficulties in meeting the interface 
boundary conditions. Another possibility is to extend the method proposed by Hennart 
Mund and Del-Valle (Hennart, 1997). They split a hexagon into four trapezoids and use a 
bilinear transformation of the trapezoids into rectangles. Contrary to Chao�s method, the 
mapping is no longer conformal and the diffusion operator is no longer preserved. These 
methods have been extended to the mixed dual method satisfactorily. The main 
disadvantage is that it is complex to divide the trapezoid into smaller elements, thus 
achieving mesh convergence. 
Finally, we have experimented with two new approaches consisting in splitting into three 
lozenges. The lozenges are transformed into rectangles by either affine mapping or 
conformal mapping. The advantage here is that each lozenge can be easily split into smaller 
lozenges, so there is no difficulty in obtaining convergence in space. By using RTN 
elements, we obtain well-structured matrices. Another advantage of this method is that it 
preserves the fundamental symmetries of the hexagonal geometry. 
The paper is divided into 7 chapters. First, we review the standard mixed dual formulation 
of the diffusion operator, then we present the general framework of the geometrical 
transformations of the plane applied to the mixed dual variational formulation. The next 
chapter is a brief description of the existing Cartesian solver, and the main part of the paper 
is a description of the various possibilities we have explored for the hexagonal geometry. 
The following chapter is devoted to our recent work on the treatment of pin-by-pin 
hexagonal geometries. The last chapter describes a numerical application and a comparison 
of the different solutions on a standard Benchmark. 

2 The mixed dual variational formulation 
First and for the sake of simplicity, we consider the diffusion equation. This equation 
couples scalar flux φ  with current rp ; in each energy group, we have: 
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By splitting the boundary into three parts Ω=Γ∪Γ∪Γ ∂321  and by denoting β  the 
monoenergetic albedo coefficient ( ] [1,1 +−∈β ), the boundary conditions can be written in 
a general form: 
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By projecting Eq. (1) and using the Green formula on the second equation, we get the weak 
mixed dual formulation; find ( ) ( ) ( )Ω×Ω∈ Γ
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where { }2
22

,0 0.)(.:])([),(
2

Γ=Ω∈∇Ω∈=ΩΓ onnpandLpLpdivH d rrrrr  
One advantage of the dual method is that the discontinuity conditions (between fluxes at 
interfaces) can be introduced in a natural way into the functional subspaces (non-essential 
conditions) (Lautard, 1993). 
 

2.1 General framework on arbitrary triangulation 

Finite element discrete spaces are always associated with triangulation over the 
computational domain. The triangulation is composed of the union of polyhedra which can 
be of arbitrary shape. At all events, these arbitrary elements K are obtained as an image by 
a mapping KF of a reference element K� . For instance, if the domain consists of the union 
of quadrilaterals (in 2D), the reference element can be the unit square. In this chapter, our 
intention is to have another point of view on the finite element problem by considering the 
problem as it can be written in the reference domain by the reciprocal of all the elementary 
mappings KF . Our intention is thus to build a new reference variational problem defined 
on the reference domain. 
Let U

hT∈
=Ω

K
K  be a triangulation defined on the computational domain, and we denote by 

G the global mapping induced by the inverse of union of all elementary element mappings 

 KxifxFxG K ∈= − )()( 1  (4) 

It can easily be shown that G defines a mapping from the computational domain into the 
reference domain ( )Ω=Ω G� . 



 

 

In order to define a new variational mixed dual problem in the reference domain, and the 
associated functional spaces, we have to first introduce local isomorphisms on each of the 
two fundamental spaces ( )KL2  and ( )KdivH , . 
In the sequel for each element K, we will denote by ( )xDFDF �=  the Jacobian matrix (for 
simplicity, we will drop the index K from now on), by ( ) )(det� DFxJJ ==  the Jacobian 

and by ( ) ( ) nDFJxJJ T
nn

�� r−==  the surface Jacobian ( n�r  being the unit outer normal 

vector). We also suppose afterwards that the local transformations are C1-diffeomorphisms. 

2.1.1 Local isomorphism of functional spaces  

We first have to define two different isomorphisms for the scalar and vector functions. 
First, for all function R→K:�φ , we associate the function R→= K:)�(φφ F  defined by: 

 1� −= Foφφ  (5) 

Application F defines an isomorphism from )�(1 KH  to ( )H K1 . 
A similar transformation is not so straightforward for the vector space ( )KdivH , . In fact, 
the transformation, which, for a vectorial function r$ : $q K d→ R , associates the vectorial 
function r r

oq q F K d= →−$ :1 R , is not an isomorphism from )�,( KdivH  to ),( KdivH . The 
adequate isomorphism has been used by Thomas and is known in the literature as the Piola 
transformation (Brezzi 1995). 
At each vector function, r$ : $q K d→ R , we associate a new vector by: 

 ( ) ( ) 1�1� −== FqDF
J

qq o
rrr G dK R→:  (6) 

Moreover, we have the following identity: 

 ( ) ( ) ∫∫ =∈∀∈∀
KK

xdqdivdxqdivKdivHqKL
�

2 ���,, ψψψ rrr  (7) 

The two previous isomorphisms are not enough to write the reference mixed dual 
variational problem. We also have to define another isomorphism which operates on the 
trace space of the currents. 
The normal trace of the currents belongs in the space )(21 KH ∂−  (the dual space of 

)(21 KH ∂ ). In fact, the isomorphism on )(21 KH ∂−  is induced by the isomorphism G 
using the divergence theorem. At every function R→∂− )�(:� 21* KHµ , we associate a new 
function defined by: 

 ( )** �µµ G= 1*�1 −= F
J n

oµ R→∂K:  (8) 

Furthermore, we have the following duality identity in the trace spaces: 
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2.1.2 The reference mixed dual variational formulation 

The previous isomorphisms are defined locally on each of the elements. The question now 
is: how can this local isomorphism be extended to global spaces ( )Ω2L  and ( )Ω,divH ? 
This can be done by writing the transmission condition on the element interfaces. For 
instance, if we look at the solution ( )Ω,divHp ∈r , it means that np rr.  is continuous through 

the interfaces. From the isomorphism G defined previously, we deduce that np
J n

�.�1 rr  should 

be continuous in the reference geometry. By denoting ( )U
iK

i KG
Γ⊂∂

∂=Γ� , we obtain the two 

global spaces on the reference domain (for flux and current): 

)�(2 ΩL  and ( )
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It�s important to note that most of the finite elements are such that the transformation F 
leads to a Jacobian Jn which is continuous through the element interfaces, thus the 

continuity condition of np
J n

�.�1 rr  is equivalent to the continuity condition of np �.� rr  and thus, 

the space )�(�
2�,0 ΩΓW  is identical to space )�,(

2�,0 ΩΓ divH . Using a change of variable and the 

previous local isomorphisms, the variational formulation can be written in the reference 
geometry: 
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With:              ( ) K
T

K
K

K DFDF
J

M 1=  (11) 

Finally, by giving a partition of the domain and a transformation F defined on each sub-
domain, the problem is reduced to calculation of matrix M and the two Jacobians J  and 
Jn . 

2.2 Mixed methods over convex quadrilaterals 

In this chapter we shall introduce the RTN finite element family which is the most 
conventional approximation of ( )divH  for rectangular geometry. For the sake of 
simplicity, we consider below the 2D case only, thus the reference element is [ ] [ ]1,01,0 × . 
The flux which belongs in )�(2 KL  is approximated in )�(1,1 KQ kk −− , while the current which 

belongs in )�,( KdivH  is represented in { } { } )]([])([)( �00��
,11, KQKQKD kkkkk −− ×⊕×= , 



 

 

thus the dth component of the current belongs in the polynomial space of degree k for the 
variable associated with direction d and degree k-1 for the others. 
In order to minimize the non zero terms of the matrices, it is useful to choose an orthogonal 
basis of the )�(1,1 KQ kk −−  space. This can be done via products of 1D Lagrange polynomials 
where the Lagrange nodes are located at the Gauss-Legendre points (Lautard, 1993). 
The discrete spaces induced by the RTN finite elements 1−kRT  on the computational 
domain triangulated by quadrilaterals are: 

 ( ){ }h1,1/
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It can be seen that spaces k
hV  and k

hW  are not necessarily piecewise polynomials. This 
depends on the choice of the mapping F. 
The discrete problem consists in finding functions ( ) k

h
k

hhh VWφp ×∈,r  such that: 
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Assuming that F is a C1-difféomorphism, the equivalent problem in the reference geometry 
is: 

Find k
h

k
hhh VWp ��)�,�( ×∈φr  such that: 
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where: 
 { }h1,1�/

2 T�)�(�:)�(�� ∈∀∈Ω∈= −− KKQLV kkKhh
k

h ψψ  (16) 
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In the case where the condition � KhK
n

nq
J �

�.�1 rr  continuous� is difficult to fulfil in the space 

k
hW� , this condition can be forced via Lagrange multipliers (mixed hybrid dual 

formulation). 



 

 

3 The case of rectangular geometry 
In rectangular geometry, the RTN elements have the interesting property of producing 
sparse matrices with coupling terms oriented only along the axis. This property is a 
consequence of the elementary mappings which are homothety (the matrix M is thus 
diagonal). Therefore the orthogonal property of the basis is kept in the computational 
domain. 

3.1 The matrix system 

The unknowns are ordered so that the x, y and z components of current unknown are 
numbered first and the unknowns corresponding to the flux afterwards. After some 
mathematical manipulations, we obtain the following system: 
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dB  ( zyxd ,,= ) is a rectangular matrix coupling the flux and the current components. 
These matrices can be reduced to �difference� matrices by a particular choice of the 
polynomial bases of the current. Also if an orthogonal basis is chosen on the flux basis, dA  
are block diagonal matrices and T is a diagonal matrix. 
It has been established numerically that using reduced integration instead of exact 
integration can improve the discrete solution. This property is linked to what is known as a 
super-convergence property. The best choice is a Gaussian quadrature of an order below 
the one which gives an exact integration (Order 12 +k  for RTN elements of degree k). 

3.2 The iterative algorithm 

In order to obtain a positive definite matrix, the flux is substituted into the current 
equations (this is very easy because T is diagonal). We obtain the current equation below: 
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where zouyxdBTBAW T
dddd ,;1 =+= −  

Using the directional leakage d
T
dd pBJ = , we perform a block Gauss-Seidel algorithm, 

each block corresponding to one of the three components of the current vectors (Lautard, 
1993). This algorithm can be viewed as an alternating direction sweep. If we consider a 
direction d, our particular choice of the RTN basis produces in the graph of Wd only 
connection oriented along the d axis. If the nodes are numbered along direction d first, the 
matrix Wd  becomes block diagonal (each block being associated to a line of nodes), thus 
resolution can be obtained very effectively on vector computers, because each of the 
subsystems can be solved simultaneously. At the end of the sweep, the even flux is updated 
and used to recalculate a new source. 



 

 

4 The treatment of hexagonal geometry 
We give a reminder here of the method suggested by Chao and Tsoulfanidis (1995) for 
nodal approximation. The idea was to split the hexagon into 4 trapezes and use a conformal 
mapping from a trapezoid to a rectangle. In the context of mixed methods, the main 
difficulty lies in the fact that while the transformation is a conformal mapping on each 
trapezoid separately, it is not conformal on the whole domain. At an oblique interface of 
two trapezoids, the Jacobian is discontinuous. Moreover, a point on an interface has two 
different images according to the hexagon being considered (Lautard, 1999). These 
transmission conditions are difficult to be fulfil in the discrete polynomial space. The best 
solution is therefore to introduce Lagrange multipliers and then to use a mixed hybrid dual 
finite element approximation. All of this makes this method very complicated to implement 
in the MINOS rectangular solver. 
We now go on to present three methods which were motivated by the Chao method. We 
restrict our presentation to 2D since it can be extended to three dimensions can be done 
without difficulty. The first method consists in splitting the hexagon into 4 trapezoids and 
using a bilinear mapping on each trapezoid as proposed by Hennart and Mund (1997) in the 
context of a nodal method. The next two methods are new approaches and consist in 
splitting the hexagon into 3 lozenges, using either an affine mapping or a conformal 
mapping from the lozenges to a rectangle domain. The main advantage here is that each 
lozenge can be easily split into smaller lozenges, so there is no difficulty in obtaining 
convergence in space. Another advantage is that this splitting preserves the fundamental 
symmetries of the hexagonal geometry. 

4.1 Splitting into trapezoids with bilinear mapping (TBI) 

In this method, we split a hexagon into 4 trapezoids. By transforming each trapezoid into a 
rectangle, we obtain a geometry which can be directly treated by the rectangular solver by 
sweeping of the two rectangular directions x and y (Figure 1). This is a distinct advantage 
for fast implementation in the MINOS solver. 
 
 
 
 
 
 
 
 
 

Figure 1 � Hexagonal geometry with splitting into trapezes 
 

If we consider the right upper quarter trapezoid, the coordinate transformation, the 
Jacobian matrix and the Jacobian read: 
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The matrix coupling reads: 

 














−−

−
−

+
==

xy

y
x

y
DFDF

J
M T

�2�

�
�2

�3

3
11

2

 (20) 

This transformation nevertheless has the disadvantage of producing cross-derivatives in the 
transformed operator because the matrix M is full. 
By replacing M and J in the discrete form, we obtain the equation associated with the TBI 
(Trapeze and BIlinear) transformation. Moreover, the calculation of Jn  shows that it stays 
constant and continuous along the different edges, thus the transmission conditions 
associated with the transformed operator correspond to the continuity of the normal trace 
and the mixed dual approximation applies without Lagrange multipliers. 
Therefore, we can use the same iterative algorithm as the one in the MINOS solver. The 
only difference is that at each iteration, we have to add a contribution to the source term 
coming from the transverse coupling. 
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where xyC  is the matrix coupling the components of the current. 
This method has been implemented in MINOS and is satisfactory, the main disadvantage is 
that we cannot divide the trapezoid into smaller trapezoidal elements and thus perform a 
mesh convergence. 

4.2 Splitting into lozenges 

The main feature of splitting into lozenges is that two elements adjacent to a third 
element K can be adjacent. This property implies that the reference geometry formed by 
square elements does not form a pavement of the plane. In fact, the reference geometry can 
be viewed as a polyedric surface in 3R ; in the 2D plane, we can just have a projected view 
(Figure 2). In this figure, the elements are connected along lines that we denote by u, v and 
w. The natural symmetry of the hexagonal geometry is thus conserved. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 � Sweeping directions on hexagonal geometry with lozenges 
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4.2.1 Affine mapping on lozenges (LAF) 

If we take lozenge U (Figure 2) of side R as an example, we easily obtain: 
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The other mappings derive from the previous mapping by rotations ( 32π  for lozenge V 
and 34π  for lozenge W). The Jacobian and the matrix M are the same for each lozenge 
and can be expressed thus: 
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The surface Jacobian Jn  is equal to the ratio between the length of the side of the reference 
square and the length of the side of its image, thus RJ n = , and remains constant and 

continuous through the interfaces. The space )�,(�
2�,0 ΩΓ divW  is thus identical to 

)�,(
2�,0 ΩΓ divH  and the RTN discrete spaces can be used as in the rectangular geometry. 

Since matrix M is constant in space, the coupling terms between currents are easy to 
compute. By eliminating the flux unknowns, we obtain a new matrix system on the current 
components: 
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where T
dddd BTBAW 1−+= ; wvud ,,=  

The iterative procedure is close to that for the rectangular case, the only exception being 
that we have three sweeping directions and a supplementary iteration to take in account the 
coupling terms between the current components. One of the advantages of this method is 
that it is easy to reduce the space meshing by subdividing each lozenge into smaller 
lozenges. This is shown in Figure 3. 
 
 
 
 
 

Figure 3 � Different ways of splitting up a hexagon 
 

4.2.2 Conformal mapping (LSC) 

A third method can be carried out by using conformal mapping of the unite square into the 
lozenge. For this, we use the Schwarz-Christoffel transformation (Marukevitch, 1967). The 
Schwarz-Christoffel transformation is a particular conformal mapping which maps the half 
complex upper plane into an arbitrary convex n-gone; the general expression reads: 
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where C is a positive constant, R∈<< naa ...1  are constants which depend on the position 
of the vertex ( 4=n  and kaaaka ′==−=′−= 4321 ,1,1,  for a symmetric quadrangular) 
and πiθ  are the angles of the polygon ( 214321 ==== θθθθ ) for a square and 

3131 == θθ , 3242 == θθ  for a lozenge). Therefore the conformal mapping F from the 
lozenge into a rectangle is the composition of two conformal mappings. 
After some mathematical developments, we obtain 223 +=′k . 
The Jacobian J, nJ  and the matrix M read: 

 ( )
( )

+∈
′−+
′+−= Cr

krr
krrrJ ;

)1(
)1(8972892,0)(

3
1

 , J Jn =  and IdentityM =  

The complex variable r is expressed in terms of elliptic function by ),��( 2kyixsnr ′+= . 
The Jacobian is space-dependent and has singularities at the vertices corresponding to the 
acute angles of the lozenge. In this case, we have extended the variational formulation by 
using weighted Sobolev spaces (Schneider, 2000). 
It can be observed that nJ  is continuous and we have no jump in contour lines at these 

interfaces as we did with conformal mapping on trapezes. Thus, the space )�(�
2,0 ΩΓW  

corresponds to the space )�,(
2,0 ΩΓ divH . As a result, the standard mixed dual variational 

formulation applies without difficulty. Nevertheless, the property ( nJ  continuous through 
the interfaces) is lost if the partitions of a hexagon are made as shown in Figure 3. The only 
possible refining is a 22 ×  as shown in Figure 4. 
 
 
 
 
 

Figure 4 � 22×  partition associated with conformal mapping 

Finally, the matrix system is slightly simpler than that obtained with affine transformation 
since we do not have the coupling transverse matrices C  (Eq. (24)). The difficulty arises 
because J is space-dependent and is not expressed as a tensorial product of 1D functions, 
thus T is no longer a diagonal matrix but a block diagonal matrix. The fill in of the matrix 
T produces a fill in of the matrices dW . To avoid this difficulty, we use a Gauss-Legendre 
quadrature formula to compute the T entries. 

5 Extension to pin-by-pin calculation 
We have described a numerical method which uses discretization based on repetitive 
hexagons. This geometric configuration is well suited to homogenized problems where the 
entire assembly has been homogenized. To be more exhaustive, we have to examine the 



 

 

configuration produced by pin-by-pin homogenization. In this case, as shown in Figure 5, 
we have to take into account the inter assembly region, where the regular space meshing is 
slightly destroyed due to the presence of the assembly boxes. The homogenized pin-by-pin 
core configuration is represented by the dotted lines in Figure 5. As can be shown, two 
supplementary element shapes add to the standard regular hexagons (a,a,a,a,a,a). They are 
symbolized by the coding (a,b,a,b,a,b) and (a,a,b,a,a,b). Extension of the methods described 
in Section 4 has been studied recently and this extension will be implemented soon in the 
MINOS solver. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 � Unstructured hexagonal geometry 
 

The LAF and TBI methods can be extended to this pin-by-pin calculation without 
difficulty, unlike the LSC method. As a matter of fact, the conformal mapping produces 
jumps of the Jacobian at the interfaces, which are impossible to take into account. The 
different splittings of the elements are given in Figure 6 for the TBI method and Figure 7 
for the LAF method. It can be seen that the TBI method needs the construction of 5 new 
different elements (which differ by their affine mapping), whereas the LAF method needs 
only 2 new different elements. 
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Figure 6 � Finite element mesh for the TBI method and new finite elements 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 � Finite element mesh for the LAF method and new finite elements 
 

6 Numerical application 
The previous methods have been compared on the two-group IAEA benchmark problem 
extended to hexagonal geometry (Hennart, 1997). We describe here only the results of the 
case with radial reflector included and an albedo boundary condition on the outer surfaces 

5.0=τ . The other three configurations give similar results (Schneider, 2000). The core 
map and the cross-sections are given in Figure 8. 
 

Material 1 2 3 4 
D1 1.5 1.5 1.5 1.5 
D2 0.4 0.4 0.4 0.4 

121 Σ+Σa  0.03 0.03 0.03 0.04 
2aΣ  0.08 0.085 0.13 0.01 

12Σ  0.02 0.02 0.02 0.04 

1fΣν  0 0 0 0 
2fΣν  0.135 0.135 0.135 0 

 
Figure 8 � Configuration of the modified IAEA 2D Hexagonal Benchmark (with reflector) 
 
Table 1 gives the discrepancy with respect to the reference of the effk  (in bold) and the 
computing time (in italics). The columns correspond to various mesh sizes (when it�s 
possible) and the lines to various degrees. 
As shown, the TBI and LAF methods converge correctly. The TBI method converges 
slightly better than the LAF method (in degrees) but is more time-consuming. The results 
obtained with the LAF method show that increasing the degree of approximation is more 
efficient than reducing the mesh size (in terms of computing time). Another observation is 
that the LSC method converges slowly. This is probably due to the singularity of the 
Jacobian which leads to a slowly converging numerical quadrature. 
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Table 1 � Error εεεε (in pcm) and computing time t (in seconds on HP-B1000 W.S.) 
for the modified IAEA 2D Hexagonal Benchmark. ( )ref

effeff kk −= 510ε , ( 00551.1=ref
effk ) 

 

Next, we compared the results of our old method used in CRONOS and based on primal 
finite elements (PRIAM). Table 2 gives the power distribution obtained by PRIAM with a 
cubic finite element and a mesh 2 for space discretization. This calculation has been taken 
as a reference. Table 3 gives the assembly power density for the 3 MINOS methods with 
respect to the CRONOS reference calculation. As shown, the three methods give good 
results, those obtained with the LAF method being slightly better. 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 � The Cronos reference power density 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 � Absolute errors in % of the power density 

        Mesh 
Degree 

TBI 
M1 

LAF 
M1 

LAF 
M2 

LAF 
M3 

LSC 
M1 

LSC 
M2 

1 (RT0) -61 
0.18 

-106 
0.09 

-7 
0.15 

-4 
0.48 

-139 
0.02 

-79 
0.10 

2 (RT1) -4 
0.33 

+9 
0.17 

0 
1.08 

0 
3.03 

-163 
0.12 

-100 
1.18 

3 (RT2) 0 
1.36 

-1 
0.69 

0 
3.89 

0 
12.15 

-39 
0.54 

-12 
4.75 

4 (RT3) 0 
3.27 

0 
1.90 

0 
10.92 

0 
31.90 

-12 
2.08 

-1 
21.93 

0.563 0.448 0 0.343 0.994 1.279 1.237 0.979 

0.640 0 0.803 1.088 1.257 1.158 

0 0.599 1.108 1.189 

0 1.166 

+ 0.03 
+ 0.11 

0 
+ 0.01 

+ 0.02 
+ 0.02 

- 0.02 
+ 0.09 

- 0.06 
+ 0.03 

- 0.05 
- 0.02 

- 0.08 
- 0.17

+ 0.03 
+ 0.11 

+ 0.01 
+ 0.10 

- 0.06 
+ 0.02 

- 0.07 
- 0.04 

- 0.03 
- 0.14 

- 0.01 
- 0.04 

- 0.01 
+ 0.01 

- 0.05 
- 0.17 

- 0.07 
- 0.20 

TBI method (RT2) 
LAF method (RT1-M2) 
LSC method (RT6-M1) 

*.** % 
*.** % 
*.** % 

0 
0 
0 

+ 0.20 

+ 0.04 + 0.08 + 0.24 

+ 0.06 + 0.08 + 0.01 + 0.14 + 0.13

- 0.01 + 0.04 + 0.01 + 0.08 + 0.16 + 0.17 + 0.22 

0 
0 
0 

0 
0 
0 

0 
0 
0 



 

 

The next table (Table 4) shows the speed-up achieved with the new MINOS methods with 
respect to the standard CRONOS calculations based on primal finite elements. The 
CRONOS calculations were carried out with various degrees and mesh sizes. The MINOS 
calculation is the one which gives about the same error on the effk  as CRONOS. As shown, 
we get a factor greater than 10 in all the calculations. 
 

 
Type E.F. 

(error with ref
effk ) 

Parabolic-Mesh2 
(5 pcm) 

Parabolic-Mesh3 
(1 pcm) 

Cubic-Mesh2 
(reference) 

RT1-Mesh1 (9 pcm) 23   
RT2-Mesh1 (1 pcm)  26 33 LAF 

RT1-Mesh2 (reference)  16 21 
RT1-Mesh1 (4 pcm) 12   

TBI 
RT2-Mesh1 (reference)  13 17 

 
Table 4 � Computing time ratio between CRONOS, LAF and TBI for equivalent effk  error 

7 Conclusion 
For Cartesian geometry and for the treatment of the diffusion equation, among the different 
finite element methods, the mixed dual approximation using Raviart-Thomas-Nedelec 
elements gives fast results with good vectorization. In this paper, we have introduced the 
general framework of its extension to quadrangular unstructured geometry. This general 
context has been applied for the treatment of regular hexagonal geometry. Different ways 
of splitting the hexagons and different elementary mappings have been examined. The 
numerical results show that splitting the hexagon into three lozenges and using an affine 
mapping gives better results. A gain of a factor of about 20 has been achieved with respect 
to the conventional finite elements. Moreover, this method can be easily extended to 
perform pin-by-pin calculations. Nevertheless, splitting into trapezes has the advantage of 
being rapidly implemented in the existing rectangular solver. These good results encourage 
us to pursue the work and extend this method for the treatment of the transport SPN 
calculations on arbitrary quadrangular unstructured meshes. 
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