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ABSTRACT 

The Variational Nodal Method is an efficient tool for determining the neutron 
transport in reactor analyses. The (inner) iterative scheme employs response matrices 
computed for homogeneous nodes from precalculated large arrays of integrals over trial 
and basis functions. It was demonstrated that for heterogeneous nodes, these arrays can be 
computed by numerical integration. In the paper a technique is presented that allows to 
avoid numerical integration (while computing “heterogeneous” response matrices) for 
some important cases. One can also apply this technique for computing contributions 
from parts of the nodes to the reactivity integrals; this feature can be useful for providing 
spatial reactivity distributions for thermal-hydraulics models which may require a 
significantly finer spatial mesh compared to the original neutronics nodal model. 

1.   INTRODUCTION 

The Variational Nodal Method (VNM) is implemented in the VARIANT code 
(Lewis, 1996) and provides opportunities for solving the neutron transport and diffusion 
equations in various 3-D geometries.  

In the VNM solution scheme, integrals of the following types (from Eq. (1), it is 
evident that the method cannot be applied when vacuum nodes are contained within the 
reactor) must be calculated for each group and node (group and node indices are omitted 
hereafter): 
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where 

ΩΩ= ∫ drfrf ii ),()( , (4) 

V is the volume of the node, )(rtσ  is the total cross-section, )(rxσ is a partial cross-
section for reaction x (removal, scattering, ...), ),( rfi Ω , (i=1,...I) are orthonormal basis 
functions depending on space position r and angle Ω :  
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These basis functions are used to approximate the (real or adjoint) even-parity flux in 
angle and space (within each node):  
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A similar approximation is used for the source term (assuming isotropic source and 
scattering).  

The functions ),( rfi Ω  are products of the known spatial and angular functions 
representing the first few members of classical complete orthonormal sets of 
mathematical functions: the spatial functions are constructed from Legendre polynomials, 
the angular functions are spherical harmonics. iζ  are the expansion coefficients (to be 
determined for each group and node when VARIANT solves the transport equation), the 
expansion orders in space and in angle being defined by the user. These orders determine 
the number of basis functions in space (Is), and in angle (Ia), the total number of the basis 
functions being I = IsIa. These basis functions are ordered in such a way that the first Is 
functions are the spatial basis functions, thus the first Is expansion coefficients iζ  define 
the scalar flux:  
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When the nodes are homogeneous, the integrals (1), (2), (3) are calculated 
analytically. The values defined by Eqs. (2), (3) are computed easily (by taking into 
account orthonormality of the basis functions within each node). The values defined by 
Eq. (1) are obtained from matrices precalculated in similar geometry for the 'unity' node 
(with volume of 1 cm3) by employing simple transformations involving a change of 
variables. These matrices (for the 'unity' node) can be precalculated once, they are 
included currently as data statements in the Fortran source of VARIANT.  
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If one has to calculate integrals (1), (2), (3) for heterogeneous nodes, more 
complex calculations are required. For 2-D XY heterogeneous geometry models, it was 
proposed (Fanning, 1997) to compute these integrals numerically (in space), Gaussian 
quadratures being used. It was shown that for these heterogeneous models, direct taking 
into account of intra-nodal cross-section spatial dependence may provide better results 
than smearing of cross-sections within nodes, these smeared cross-sections then being 
used for VNM calculations (hereafter we do not discuss how to prepare the effective 
cross-sections for heterogeneous nodes).  

Direct numerical integration makes the computations more complicated and time-
consuming. In this paper, it will be shown how to avoid numerical integration for some 
simple cases. The results, however, may be generalized for more complicated models.   

2.   ANALYTICAL CALCULATION OF MATRICES A FOR AXIALLY 
HETEROGENEOUS NODES 

Let us consider a 3D (HEX-Z or X-Y-Z) reactor model in which some nodes are 
heterogeneous in axial direction (only in axial). We will suppose that the node is 
subdivided into N axial parts, within each part (zk, zk+1 ), k=1, 2, ... N, the cross-sections 
being homogeneous. This may be, for example, a node which includes the bottom of a 
movable control rod, a lower part of this node being assigned to the control rod follower. 
Then integrals in (1), (2), (3) may be calculated as  
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Within each k-th sub-node, the functions ),( rfi Ω  are no longer orthonormal. Let us 
introduce suitable functions ),(, rf ik Ω which would be orthonormal there. Assuming that 
both ),(, rf ik Ω and ),( rfi Ω are constructed from the same set of spatial and angular 
polynomials, one can expand ),( rfi Ω within each sub-node k as  
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where ),(, rf ik Ω are orthonormal within the sub-node:  



 

 (4) 

jijk
V

ik
k

dVdrfrf
V

k

,,, ),(),(1 δ=ΩΩΩ∫ ∫ . (12) 

Then  

dVdrfrf
V

C m
V

i
k

imk

k

ΩΩΩ= ∫ ∫ ),(),(1
,, . (13) 

Employing Eq. (11), one can transform Eqs. (8)  
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Eqs. (9), (10) can be transformed in the same manner. The values defined by Eq. (15) (as 
well as the corresponding integrals related to Eqs. (9), (10)) may be computed in the usual 
way (for each sub-node as for a conventional homogeneous node). Therefore, knowing 
the matrices C, one can obtain the matrices A (for axially heterogeneous nodes) by simple 
summation, thus avoiding any numerical integration. The application of this method is 
justified when the flux in a heterogeneous node can be sufficiently accurately 
approximated in space by the few first basis functions because otherwise it might be 
better to deal with finer nodes.  

3.   CALCULATION OF THE MATRIX C FOR A PARTICULAR LAYER 

In VARIANT, the following products are used as basis functions:  
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The axial basis functions are  
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where )(ilP are Legendre polynomials of order l(i), the integer function l(i) is defined by 
the ordering of the basis functions, Nz  and 1z are the lower and upper node boundary 
positions, respectively. 

Let us define functions 
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where  
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The matrix G consists of zero and unity entries (because the angular basis 
functions are orthonormal) and may be defined easily once one knows the ordering of the 
basis functions. In rectangular geometry, the functions Wi(x,y) are also orthonormal, 
therefore, the matrix D has also only zero and unity entries.  For hexagonal geometry, not 
all functions Wi(x,y) are orthonormal, and the structure of the matrix D is a little bit more 
complicated (compared to rectangular geometry), but its few entries, which are not equal 
to zero and not equal to unity, may also precalculated only once.  

Eq. (23) may be rewritten as  
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Taking into account that the values defined by Eq. (25) are equal to zero for m>i (a 
Legendre polynomial is orthogonal to any polynomial of lower order), one may calculate 
these values by employing the following recurrence formulae  (Rineiski, 1989):  
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In Eq. (31), the third term in the brackets is equal to zero for m=0.  

4.   INTRA-NODAL POWER DENSITY AND REACTIVITY WORTHS 

Let us consider a problem when one has to calculate the power density and 
reactivity worths for small sub-nodes (in the axial direction) of rather big nodes 
(employed for spatial discretization in the VNM solution scheme). Hereafter, we will 
suppose that the even-parity real/adjoint flux expansion coefficients (for the VNM nodes) 
have already been obtained. It is no longer relevant whether the cross-sections have been 
preliminary smeared or the (potentially) more accurate integration technique (described in 
the previous section) was employed in the VNM solution scheme.  

The power density in a sub-node is defined as: 
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and may be calculated employing Eqs. (6), (11) as:  
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This leads us to the idea of defining sub-node expansion coefficients as: 
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For perturbation theory calculations with VNM (Laurin-Kovitz, 1995), the interface 
partial current moments are not needed (unlike in some other nodal methods). The 
perturbation theory integrals for entirely homogeneous nodes can be computed in two 
steps. During the first step, the scalar (inner) products of the real and adjoint flux 
moments are computed from the expansion coefficients. During the second step, the 
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integrals (reactivity effect contributions, effβ , Λ , etc.) are computed from the scalar 
products and nuclear data (the nodal-wise cross-sections, delayed neutron data, velocities, 
etc.). The scalar products are of the following types:  
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where  
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These scalar products can be used easily to compute reactivity worths related to 
entire nodes: the nodal cross-sections are just multiplied by these scalar products and then 
the products are summed in a certain way.  

To retain this two-step scheme for the intra-nodal reactivity worth calculations, 
we will calculate the sub-node scalar products as: 
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The integrals defined by Eq. (40) for sub-nodes may be computed in the same way as it is 
currently performed for entire (homogeneous) nodes.  

5.   NUMERICAL RESULTS 

The proposed technique for the intra-nodal power density and reactivity worth 
curves computations was implemented into KIN3D, a kinetics and perturbation theory 
extension (Rineiski, 1997) for VARIANT, to provide neutronic parameters for an 
accident analysis code. 
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To test the new option, the calculations of the nodal/sub-nodal contributions to the 
reactivity effects related to control rod movement were performed for the Takeda 1 and 
Takeda 4 benchmark models (Takeda, 1991). In order to illustrate the type of these 
models, the horizontal cross-sections of the layouts are given in Fig. 1 and Fig. 2. 

The Takeda 1 model is a thermal reactor; the core height is 30 cm; two axial 
reflectors (of 10 cm thick) are above and below the core. An important characteristic of 
this model is that the diffusion theory predicts the wrong sign of the control rod worth 
value. The Takeda 4 model is a fast system; the core height is 60 cm, two axial blankets 
(of 20 cm thick) and two axial reflectors (of 45 cm thick) are above and below the core. 

These contributions were computed in three ways: (1) for a 'coarse' axial mesh, 
the contributions were evenly distributed to a finer axial mesh; (2) for the same coarse 
mesh, but then the flux/adjoint flux moments were 'remapped' to a finer axial mesh; (3) 
directly for the 'fine' mesh.  

The results for the model 1 are presented in Table 1. The calculations were 
performed in X-Y-Z geometry with P3 angular approximation and spatial approximation 
of the 4-th order. The coarse mesh size was 10 cm, the fine mesh size was 2.5 cm. 

In Fig. 3 the results of Table 1 are presented in graphical form in the axial range   
0 – 25 cm (1/2 core). These results show that the described method of calculations 
provides reasonable sub-nodal reactivity values (which certainly do not exactly agree with 
the figures provided in the 'fine' mesh case) and preserves the 'coarse' nodal reactivities. 

 
 

Fig. 1 Horizontal cross-sections of the Takeda 1 model in axial mid-plane 
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Fig. 2 Horizontal cross-sections of the Takeda 4 model in axial mid-plane 

Table 1     Nodal (coarse, fine) and sub-nodal (evenly distributed, remapped) 
contributions to full control rod withdrawal effect for the Takeda 1 model 

 
Axial position 

  
Contributions to reactivity (pcm) 

 
 zl (cm) zh (cm) Coarse Remapped Fine 

0 2.5 -4.0 -5.6 -4.2 
2.5 5 -4.0 -8.5 -7.2 
5 7.5 -4.0 -5.9 -6.4 

Blanket 

7.5 10 -4.0 8.0 8.2 
Total in Blanket 0 10 -12.0 -12.0 -9.5 

10 12.5 81.2 38.4 41.3 
12.5 15 81.2 70.1 73.0 
15 17.5 81.2 99.1 99.9 

1st Core node 

17.5 20 81.2 121.4 122.1 
Total in 1st Core node 10  20 328.9 328.9 336.2 

20 22.5 141.1 136.5 138.3 
22.5 25 141.1 145.7 146.8 
25 27.5 141.1 145.7 146.8 

2nd Core node 

27.5 30 141.1 136.5 138.3 
Total in 2nd Core 
node 

20 30 564.4 564.4 570.2 

Total in Reactor  0 50 1198.3 1198.3 1223.6 
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In Fig. 4 similar results are presented for the Takeda 4 model. The calculations 
were performed in HEX-Z geometry with of P3 angular approximation and spatial 
approximation of the 4-th order. As in the previous case, good agreement between 
“remapped” and “fine” curves is demonstrated.  
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Fig. 3 Reactivity contributions to control rod withdrawal for the Takeda 1 model. 
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Fig. 4 Reactivity contribution to all control rods insertion for the Takeda 4 model. 

The presented results show, that the fine spatial reactivity distributions can be 
determined with reasonable accuracy for coarse mesh models by employing the additional 
information about the flux and adjoint intra-nodal distributions. The computing time 
usually increases linearly (or faster) with increasing the number of nodes. That is why 
employing intra-nodal reactivity calculations with “coarse” direct and adjoint fluxes may 
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save computer time compared to direct “fine” flux and reactivity calculations (e.g. by a 
factor of 2 if the number of “fine” nodes is twice as the number of coarse nodes). 

6.  CONCLUSIONS 

The proposed technique can be used to extend the existing VARIANT capabilities 
for flux calculations with axially heterogeneous nodes. It was tested in sub-nodal (in the 
axial dimension) reactivity worth calculations and provides reasonable results. This 
technique was used in creating an interface with a thermal hydraulics code, needing more 
detailed local information deduced from a proper specification of the material 
management not taken into account in the more crude calculation model applied for the 
overall real/adjoint flux calculations.  
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