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ABSTRACT 
 

This paper provides Fourier stability/convergence analysis of the coarse mesh finite difference 
(CMFD) acceleration method, compared to that of the coarse mesh rebalance (CMR) method. The 
results show that CMFD is also conditionally stable as is CMR. The behavior of its spectral radius 
is similar to that of the inconsistent diffusion synthetic acceleration (DSA). The CMFD method is 
fast converging when the mesh size is small as is DSA, but it becomes divergent or ineffective as 
the mesh size increases as does CMR. The numerical results on several test problems are in good 
agreement with the Fourier analysis. 
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1. INTRODUCTION 
 
As the reactor core becomes more complicated, there is growing need to perform three-
dimensional whole-core heterogeneous transport calculations [1,2], which require many 
iterations and long computing times. Among many acceleration methods for neutron transport 
calculations, the coarse mesh rebalance (CMR) acceleration method is extremely simple to apply 
regardless of the discretization schemes for the transport solution.[3,4] Although it is not 
unconditionally convergent and it is a nonlinear method, it is easily linearized and its 
convergence properties are Fourier-analyzable. It does not involve interim solutions in the 
denominators and thus it should be numerically robust, unlike many other nonlinear methods, 
and if it converges, it does so to the unaccelerated solution, i.e., it is a true acceleration method. 
The CMR adjusts the average amplitude of the flux over each coarse volume while leaving the 
detailed space-angle distribution of the flux within the coarse mesh unchanged. This 
complements nicely the iteration on the scattering source, which corrects details in the space-
angle distribution rapidly but is poor in eliminating components of the error that extend over 
large spatial domains.[3] 
 
The so-called coarse mesh finite difference (CMFD) acceleration method is popular especially 
for the fast solutions of nodal diffusion equations.[5]-[7] Recently, this CMFD method has been 
employed for the acceleration of the 2-D transport calculation in the CASMO-4 code[8,9] with 
remarkable results. Similar works are reported in Refs. 10 and 11. In the CMFD method, a 
current correction coefficient is introduced to preserve the interface currents between coarse 
meshes, which are results from the solutions of transport sweep.  
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In this paper, we present a comparison of the convergence and stability properties of the two 
acceleration methods. Since both methods are nonlinear, they are linearized and then Fourier-
analyzed. The convergence analysis of the CMR method is already available in the literature but 
is included here for completeness. The convergence analysis of the CMFD method is, however, 
presented here for the first time to the best of our knowledge. 
 
 

2. CMR AND CMFD METHODS IN SLAB GEOMETRY 
 

2.1.  Equations of Coarse Mesh Rebalance (CMR) Method 
 
In the slab geometry, the neutron transport equation is written as follows:  
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where the standard notations are used and l denotes the iteration index.[3] 
 
To derive the CMR equations, let us consider a coarse mesh which contains several fine meshes 
as shown in Fig. 1.  
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Fig.1. Configuration of coarse meshes and fine meshes in slab geometry. 

 
When angular integration and spatial integration over the coarse mesh are performed, we obtain 
the following equation: 
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i denotes coarse mesh and k fine mesh, and ( nn w,µ ) are the discrete ordinates quadrature set.  
 
Following the standard procedure, we first change all the indices in Eq. (2) into l+1. Then the 
rebalance factor, , is defined on coarse mesh i and it is allowed to be discontinuous at the 
interfaces between coarse meshes. Since neutrons contributing to  are leaving the coarse mesh 
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i we use , and for , whose neutrons are from the coarse mesh i+1 to the coarse mesh i we 
use : 
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The CMR equation for slab geometry is then derived easily as  
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If the vacuum boundary condition is imposed on the left side (coarse mesh 1), then  and 
the CMR equation is given as 
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If the reflective boundary condition is given on the right side (coarse mesh I), then  and 
. Thus, the CMR equation is derived as 
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If the reflective boundary conditions are given on both sides of the problem, the incoming 
boundary angular flux should be updated on each iteration as follows: 
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As the solution converges, the rebalance factor fi approaches unity, so the detailed balance is 
satisfied in CMR.  
 

2.2.  Equations of Coarse Mesh Finite Difference (CMFD) Method 
 
The form of CMFD equations is similar to that of the usual finite difference equation with a 
mesh-centered scheme, but there is an additional current correction factor, D̂ , which is defined 
as[8]-[11] 
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The CMFD equation for coarse mesh i with current correction factors is 
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Rewriting Eq. (15), we obtain 
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The CMFD equation with vacuum boundary condition is then derived as, using the mesh average 
scalar fluxes of coarse mesh 1, 
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The use of a ratio of the mesh average scalar fluxes in Eq. (18) comes from the concept of the 
CMR factor.  
 
If the reflective boundary condition is given on the right side (coarse mesh I), then  so that  0=IJ
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Thus, the CMFD equation with reflective boundary condition is given as 
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In the case of the reflective boundary conditions on both sides, the incoming angular flux is 
updated using the coarse-mesh average scalar fluxes:  
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3. CONVERGENCE ANALYSES OF CMR AND CMFD 

   
To investigate convergence or stability of some acceleration methods, Fourier analysis is widely 
used. To begin Fourier analysis, nonlinear methods should be linearlized and a model problem of 
an infinite medium, constant cross section, and flat source with a uniform mesh is considered. 
Then the Fourier ansatz is applied, which has the standard Fourier component 
[exp( xjλ ), 1−=j ] and the eigenvalue( ω ). The spectral radius( ρ ) is the maximum of the 
eigenvalues. If ρ <1, the method is stable.  
    

3.1.  Fourier Analysis of CMR 
    
In the case of CMR, a detailed stability analysis was performed by Cefus and Larsen.[12] They 
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provide a procedure of linearlization to accomplish analysis of the CMR method, which is 
originally nonlinear. In the derivation, diamond differenced high-order equation is used. For the 
general coarse mesh rebalance (p fine meshes per coarse mesh), they derived an eignenvalue 
problem in a form: 

,)]([ ALAHIUVHA CMR=−⋅−= ηω                                       (23) 
where 

,][ )1(1)1(
T

pipi AA −+−= LA                                                                                           (24a) 

,

01
1

10
010





















⋅⋅⋅=M  ,                                                         (24b) 

10
01

01
001





















⋅⋅⋅=I

])exp()[exp(1 IMK ττ jj
j

−−= ,])exp()[exp( 1−−+× IM ττ jj                                  (24c) 

,])/2([
2

12

1

−

=

⋅+= ∑ KKIH hwc
n

N

n
n µ                                                                           (24d) 

,))]1(exp())1([exp())],1(exp())1([exp( Tpjpjpjpj −−=−−= ττττ LL UV     (24e) 

,
)1()(sin2 2 cphp

hc
−+

=
τγ

η  ,
2
hλτ =  ,

σ
σ sc =  .                               (24f) 

2/

1
∑

=

=
N

n
nnwµγ

 
The spectral radius( ρ ) is  
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For the case of fine mesh rebalance (p=1), the eigenvalue( ω ) is expressed explicitly as  
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Figs. 2, 3, and 4 show the spectral radii of CMR for various scattering ratios when p=1, p=2, and 
p=4, respectively, using the S16 Gauss-Legendre quadrature set. Since the Fourier analysis is 
performed after linearization around the solution of an infinite medium problem, it does not 
apply to the case of c=1. Therefore, we have chosen values for c upto 0.9999. It is indicated that 
for given c, when p=1, CMR is unstable for hσ  too small or too large. The case of a large p is 
generally more stable compared to the case of p=1, especially for thick mesh sizes.  
 

3.2.  Fourier Analysis of CMFD 
 
This section describes the procedure of Fourier analysis of CMFD. For the high-order equations, 
the diamond differencing (DD) scheme is used as 
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If the medium is infinite with constant cross sections and uniform meshes, the low-order 
equations of the CMFD method are given by 
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Fig. 2. Spectral radius of CMR for various scattering ratios for p=1. 
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Fig. 3. Spectral radius of CMR for various scattering ratios for p=2. 
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Fig. 4. Spectral radius of CMR for various scattering ratios for p=4. 
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The CMFD method is nonlinear, so the CMFD equations are linearized around the solution of 
the model problem. If we define the following ansatz for linearization: 
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and choose the O(ε ) term, the following linear equations are obtained after some algebra: 
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The O(1) terms are automatically satisfied and the O( ) terms are neglected. When Eq. (38) is 
derived the following balance equation was used, which was also used to linearize the CMR 
equation: 

2ε

)(
2
1 2/1

2/1,
2/1

2/1,
1

+
−

+
+

=

−∑ l
in

l
in

N

n
nnw ξξµ .2/1 ∑∑ =− +

k

l
ks

k

l
k hh ςσςσ                        (40) 

We note that Eq. (38) is in the same form as the inconsistent diffusion synthetic acceleration 
(DSA) equation. Thus, it is expected that the convergence of the CMFD method may be similar 
to that of the inconsistent DSA method. 
 
In the case of a uniform mesh and an infinite medium, the following Fourier ansatz are 
appropriate: 
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Introducing these Fourier ansatz into Eqs. (36) and (37), the Fourier components cancel out. The 
high-order equations (Eqs. (36) and (37)) are rewritten in the following matrix form, 
interestingly in a similar form of the CMR method: 
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Rewriting Eq. (38) using the Fourier ansatz,  
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where  
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Eq. (39) is rewritten as 
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Combining Eqs. (47) and (49), the following eigenvalue problem is obtained: 
Aω AHIUVH )]([ −⋅−= θ ,ALCMFD=                                  (51) 

where  
.)]1()3/()}(sin4/[{ 2 chpphphc −+= τθ                                    (52) 

For the case of fine mesh rebalance (p=1), the eigenvalue( ω ) is expressed explicitly as  
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It is interesting to note that the eigenvalue equations of CMR and CMFD methods have the same 
form, the only difference being substituting )3/(2 phσ  for γ .  
 
Figs. 5, 6, and 7 show the behavior of the spectral radius of CMFD for various scattering ratios 
when p=1, p=2, and p=4, respectively, using the S16 Gauss-Legendre quadrature set. Fig. 8 shows 
the spectral radius of the CMR and the CMFD methods when the scattering ratio is 0.99. The 
spectral radius of the CMFD method is something like that of the common mesh-centered 
inconsistent DSA.[13] As the mesh size increases, the spectral radii of the CMFD method also 
increase similarly as (actually faster than) the CMR method, eventually both becoming unstable 
(or ineffective). The behavior of coarseness (p) in CMFD is wider in the stable region (lowers the 
spectral radius below unity) than the fine case (p=1). The coarseness in CMFD also widens the 
inefficient region as the “spectral wave” moves leftward (Fig. 8). The CMFD method is fast 
converging as is DSA when the mesh size is small enough, because the spectral radius is less 
than 0.23.  
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Fig. 5. Spectral radius of CMFD for various scattering ratios for p=1. 
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Fig. 6. Spectral radius of CMFD for various scattering ratios for p=2. 
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Fig. 7. Spectral radius of CMFD for various scattering ratios for p=4. 

 

American Nuclear Society Topical Meeting in Mathematics & Computations, Gatlinburg, TN, 2003 10/17
 



A Comparison of Coarse Mesh Rebalance and Coarse Mesh Finite Difference Accelerations for the Neutron Transport Calculations 
 

0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ec

tra
l R

ad
iu

s 
(ρ

)

Optical Thickness (σ h)

 CMR (p=1)
 CMR (p=2)
 CMR (p=4)
 CMFD (p=1)
 CMFD (p=2)
 CMFD (p=4)

 
Fig. 8. Spectral radius of CMR and CMFD for various p’s (c=0.99). 

 
 

4. NUMERICAL COMPARISONS OF CMR AND CMFD 
 

4.1.  Consistency of Solutions 
 
When an acceleration method is considered, it is important to check whether the converged 
solution of the low-order equation (acceleration equation) is the same as that of the high-order 
equation (transport equation) and identical to the unaccelerated solution. The CMR method 
clearly has such a consistency of solutions because it uses spatial balance without additional 
approximation. But the CMFD method uses mesh-average scalar fluxes as unknowns and thus 
requires careful treatment of the boundary conditions, particularly the vacuum boundary 
condition; otherwise it may break the consistency. The treatment of Eq. (18) based on the CMR 
factor concept ensures the consistency. For numerical demonstration, two kinds of tests are 
performed. The first test is a mono-energy, homogeneous, isotropic, one slab problem which is 
depicted in Fig. 9. 

0 cm
s

Vacuum
σ =1           σ    = 0.9

10 cm
cm-1

Q= 1.0
Vacuum

cm-1

#/cm3 sec

 
Fig. 9. Configuration of test problem 1. 

 
Vacuum boundary conditions are imposed on both sides and the problem size is 10 cm. The 
convergence criterion is 1.0E-9 for the maximum pointwise scalar flux. Diamond differencing 
(DD) scheme is considered for spatial discretization and S16 Gauss-Legendre quatrature is used. 
The mesh size is 1 cm and numbers of coarse meshes are chosen as 5 and 10 and thus the 
corresponding numbers of fine meshes are 2 and 1, respectively. Table I shows the solutions of 
source iteration (SI), CMR, and CMFD. Source iteration (SI) uses the solution of the high-order 
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equation as the next iteration without any low-order equations. Thus the solution of SI means no 
acceleration. From Table I, we note that there are no differences among SI, CMR, and CMFD 
solutions even with different coarse meshes.  
 

Table I. Scalar flux distribution for various methods 
Methods SI CMR 

(high-
order) 

CMR 
(low-
order) 

CMFD 
(high-
order) 

CMFD 
(low-
order) 

# of 
iterations 

144 (32a,24b) (22,33) 

Mesh 1 
Mesh 2 
Mesh 3 
Mesh 4 
Mesh 5 
Mesh 6 
Mesh 7 
Mesh 8 
Mesh 9 

Mesh 10 

4.320019  
6.873371  
8.054203  
8.753147  
9.027606  
9.027606  
8.753147 
8.054203 
6.873371 
4.320019 

4.320018  
6.873370  
8.054202  
8.753145  
9.027604  
9.027604  
8.753145 
8.054202 
6.873370 
4.320018 

4.320019  
6.873370  
8.054202  
8.753145  
9.027604  
9.027604  
8.753145 
8.054202 
6.873370 
4.320019 

4.320018  
6.873370  
8.054202  
8.753145  
9.027604  
9.027604  
8.753145 
8.054202 
6.873370 
4.320018 

4.320019  
6.873370  
8.054202  
8.753145  
9.027604  
9.027604  
8.753145 
8.054202 
6.873370 
4.320019 

a: Number of iterations for 10 coarse meshes, 
b: Number of iterations for 5 coarse meshes. 

 
 
 

Reflective Fuel Absorber Water 1 Water 2 Vacuum

x=0.0 10.0 12.0 15.0 20.0 cm  
Fig. 10. Configuration of test problem 2. 

 
 

Table II. Cross sections for materials 
 Group σg σ0g->1 σ0g->2 σ1g->1 σ1g->2 qg 

1 0.3 0.27 0.01 0.09 0.002 5sin(πx/10)Fuel 
2 1.0 0.001 0.9 0.0002 0.08 0 
1 0.2 0.18 0.01 0.08 0.003 0 Absorber 
2 3.53 0.001 0.53 0.0003 0.06 0 
1 0.401 0.32 0.08 0.07 0.003 5 Water 1 
2 1.30 0.002 1.29 0.0004 0.2 5 
1 0.401 0.32 0.08 0.07 0.003 0 Water 2 
2 1.30 0.002 1.29 0.0004 0.2 0 
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The second test is a two-group, heterogeneous, anisotropic, multi-slab problem as shown in Fig. 
10. Table II shows the cross sections for each material. Convergence criterion is 1.0E-6 and the 
diamond differencing (DD) scheme is used with S8 Gauss-Legendre quadrature. Fig. 11 shows 
the distribution of fast scalar flux and Fig. 12 shows the distribution of thermal scalar flux. For 
this test problem 2, the analytic solutions (spatial truncation error-free) are provided by 
IMGF.[14] Table III shows the fast and thermal flux from SI, CMR, and CMFD. We note that 
both CMR and CMFD have the consistency of solutions. 
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Fig. 11. Distribution of fast scalar flux for various methods. 
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Fig. 12. Distribution of thermal scalar flux for various methods. 
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Table III. Fast and thermal flux solutions by various methods 
x 

(cm) 
Fast scalar flux 

IMGF    DD(SI)   DD(CMR)  DD(CMFD) 
Thermal scalar flux 

IMGF    DD(SI)   DD(CMR)  DD(CMFD) 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
20 

80.0821   80.08967   80.08968   80.08968 
81.7739   81.77441   81.77442   81.77442 
84.8993   84.89926   84.89927   84.89927 
87.6545   87.65400   87.65401   87.65401 
88.9791   88.97816   88.97817   88.97817 
88.2545   88.25319   88.25320   88.25320 
85.2486   85.24730   85.24730   85.24730 
80.1082   80.10713   80.10714   80.10714 
73.3524   73.35152   73.35153   73.35153 
65.8901   65.88962   65.88963   65.88963 
59.1947   59.19892   59.19893   59.19893 
56.6129   56.61649   56.61650   56.61651 
55.4018   55.40516   55.40517   55.40517 
51.4168   51.42089   51.42091   51.42091 
45.0571   45.06128   45.06130   45.06130 
34.8274   34.82835   34.82837   34.82836 
24.5941   24.59202   24.59203   24.59202 
18.1426   18.14178   18.14180   18.14178 
13.2847   13.28441   13.28442   13.28440 
5.44722    5.44691    5.44691    5.44690 

8.24275    8.24354    8.24354    8.24354 
8.27467    8.27525    8.27525    8.27525 
8.33493    8.33526    8.33526    8.33526 
8.35586    8.35603    8.35603    8.35603 
8.27073    8.27085    8.27086    8.27086 
8.02301    8.02321    8.02321    8.02321 
7.56696    7.56738    7.56738    7.56738 
6.86103    6.86177    6.86177    6.86177 
5.85031    5.85146    5.85146    5.85146 
4.42285    4.42528    4.42528    4.42528 
1.99504    1.99498    1.99498    1.99498 
0.54028    0.53692    0.53692    0.53692 
38.0336   38.03395   38.03418   38.03418 
97.0065   97.01582   97.01651   97.01649 
119.999   119.9953   119.9963   119.9963 
116.781   116.7853   116.7865   116.7864 
99.9597   99.96303   99.9643    99.9643 
81.3391   81.34252   81.34367   81.34369 
60.7159   60.71869   60.71960   60.71965 
12.5308   12.53137   12.53156   12.53157 

 

4.2.  Convergence of Solutions  
 
To check the convergence, the numerical spectral radius and the number of iterations are 
compared for CMR and CMFD methods. The matrix forms of CMR and CMFD are in tri-
diagonal form in slab geometry. Therefore, the CMR and CMFD equations are directly solved. 
Test problem 1 is considered. Fourier analysis is confirmed with various cases of coarseness and 
various scattering ratios. Tables IV, V, and VI show the numerical spectral radii and the number 
of iterations for p=1, p=2, and p=4, respectively. These results indicate the CMFD method has 
better convergence than the CMR method when the mesh size is small, but for a large mesh size 
the two methods exhibit similarly divergent behavior. These results are in agreement with the 
Fourier analysis. 
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Table IV. Number of iterations and numerical spectral radius (p=1) 

Source Iteration CMR CMFD σh a 
(I b) c=0.8 c c=0.9 c=1.0 c=0.8 c=0.9 c=1.0 c=0.8 c=0.9 c=1.0

0.01 
(1000) 

79 d 
0.7806e 

145 
0.8781 

684 
0.9757

N.C.f N.C. N.C. 11 
0.1526

12 
0.1792 

13 
0.2061

0.02 
(500) 

79 
0.7806 

145 
0.8781 

694 
0.9757

N.C. N.C. N.C. 11 
0.1525

12 
0.1791 

13 
0.2087

0.1  
(100) 

79 
0.7806 

145 
0.8781 

694 
0.9757

147 
0.9097

N.C. N.C. 11 
0.1494

12 
0.1758 

13 
0.2051

0.2 
(50) 

79 
0.7806 

145 
0.8781 

693 
0.9757

32 
0.6178

139 
0.8947

N.C. 11 
0.1402

12 
0.1661 

13 
0.1947

1.0 
(10) 

78 
0.7803 

144 
0.8779 

686 
0.9754

24 
0.4494

32 
0.5551

51 
0.6881

18 
0.3335

22 
0.4041 

28 
0.4872

2.0  
(5) 

78 
0.7797 

143 
0.8772 

665 
0.9746

53 
0.6926

199 
0.9071

N.C. N.C. N.C. N.C. 

a: Total cross section (σ) x Mesh size of fine mesh (h),  b: Number of coarse meshes, 
c: Scattering ratio,  d: Number of iterations,  e: Numerical spectral radius,  f: Not converged. 

 
 
 

Table V. Number of iterations and numerical spectral radius (p=2) 
CMR CMFD σh a 

(I b) c=0.8 c=0.9 c=1.0 c=0.8d c=0.9 c=1.0 

0.01 
(500) 

N.C.c N.C. N.C. 11e 
0.1526f 

12 
0.1792 

13 
0.2088 

0.02 
(250) 

N.C. N.C. N.C. 11 
0.1527 

12 
0.1793 

13 
0.2088 

0.1 
(50) 

34 
0.6300 

163 
0.9098 

N.C. 11 
0.1553 

12 
0.1828 

13 
0.2112 

0.2 
(25) 

17 
0.3419 

31 
0.5667 

86 
0.8066 

11 
0.1654 

12 
0.1929 

14 
0.2241 

1.0 
(5) 

21 
0.4171 

24 
0.4820 

31 
0.5687 

21 
0.4723 

33 
0.5588 

28 
0.4872 

2.5 
(2) 

36 
0.5834 

46 
0.6563 

64 
0.7292 

36 
0.5834 

46 
0.6563 

N.C. 

a: Total cross section (σ) x Mesh size of fine mesh (h),  b: Number of coarse meshes, 
c: Not converged,  d: Scattering ratio,  e: Number of iterations,  f: Numerical spectral radius. 
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Table VI. Number of iterations and numerical spectral radius (p=4) 
CMR CMFD σh a 

(I b) c=0.8 c=0.9 C=1.0 c=0.8d c=0.9 c=1.0 

0.01 
(250) 

N.C.c N.C. N.C. 11e 
0.1528f 

12 
0.1795 

13 
0.2089 

0.02 
(125) 

N.C. N.C. N.C. 11 
0.1536 

12 
0.1804 

13 
0.2098 

0.05 
(50) 

34 
0.6322 

169 
0.9127 

N.C. 11 
0.1590 

12 
0.1869 

14 
0.2174 

0.1 
(25) 

18 
0.3614 

32 
0.5706 

90 
0.8136 

12 
0.1806 

13 
0.2096 

14 
0.2426 

0.625 
(4) 

29 
0.5467 

35 
0.6189 

46 
0.6867 

29 
0.5414 

48 
0.6613 

N.C. 

0.8333 
(3) 

31 
0.5374 

40 
0.6128 

56 
0.6994 

33 
0.5886 

166 
0.8912 

N.C. 

1.25 
(2) 

45 
0.6572 

62 
0.7394 

97 
0.8216 

45 
0.6572 

62 
0.7394 

N.C. 

a: Total cross section (σ) x Mesh size of fine mesh (h),  b: Number of coarse meshes, 
c: Not converged,  d: Scattering ratio,  e: Number of iterations,  f: Numerical spectral radius. 

 
 

5. CONCLUSIONS 
 
The coarse mesh rebalance (CMR) and coarse mesh finite difference (CMFD) methods are 
appealing acceleration methods for the neutron transport calculations. This is because it is 
extremely simple to apply them regardless of the discretization schemes of the transport 
equation. The coarse mesh can be chosen conveniently as simple in shape and size and overlayed 
on the fine meshes. The fine meshes inside a coarse mesh can be irregular and unstructured, 
depending on the solution scheme of the transport sweep.  
 
This paper presented convergence analyses (linearized Fourier analyses) of the two acceleration 
methods with comparison. As is known in the literature, CMR is conditionally stable in that it is 
unstable for mesh size too small or too large. As the number of fine meshes in a coarse mesh 
increases, CMR tends to be stable but becomes inefficient. The results of the study in this paper 
show for the CMFD method that it is also conditionally stable (in a companion paper[15] in this 
Proceedings, an unconditionally stable coarse-mesh acceleration method is described). The 
behavior of coarseness (p) of CMFD is similar to that of CMR. The behavior of the spectral 
radius of the CMFD method is reminiscent of and similar to that of the inconsistent DSA. The 
CMFD method is fast converging when the mesh size is small as is DSA, but it becomes 
divergent or ineffective as the mesh size increases as does CMR. These results of convergence 
analyses are in agreement with the numerical results of the test problems solved. Similar results 
are also obtained for eigenvalue problems.  
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