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ABSTRACT

This paper provides Fourier stability/convergence analysis of the coarse mesh finite difference
(CMFD) acceleration method, compared to that of the coarse mesh rebalance (CMR) method. The
results show that CMFD is also conditionally stable as is CMR. The behavior of its spectral radius
is similar to that of the inconsistent diffusion synthetic acceleration (DSA). The CMFD method is
fast converging when the mesh size is small as is DSA, but it becomes divergent or ineffective as
the mesh size increases as does CMR. The numerical results on several test problems are in good
agreement with the Fourier analysis.
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1. INTRODUCTION

As the reactor core becomes more complicated, there is growing need to perform three-
dimensional whole-core heterogeneous transport calculations [1,2], which require many
iterations and long computing times. Among many acceleration methods for neutron transport
calculations, the coarse mesh rebalance (CMR) acceleration method is extremely simple to apply
regardless of the discretization schemes for the transport solution.[3,4] Although it is not
unconditionally convergent and it is a nonlinear method, it is easily linearized and its
convergence properties are Fourier-analyzable. It does not involve interim solutions in the
denominators and thus it should be numerically robust, unlike many other nonlinear methods,
and if it converges, it does so to the unaccelerated solution, i.e., it is a true acceleration method.
The CMR adjusts the average amplitude of the flux over each coarse volume while leaving the
detailed space-angle distribution of the flux within the coarse mesh unchanged. This
complements nicely the iteration on the scattering source, which corrects details in the space-
angle distribution rapidly but is poor in eliminating components of the error that extend over
large spatial domains.[3]

The so-called coarse mesh finite difference (CMFD) acceleration method is popular especially
for the fast solutions of nodal diffusion equations.[5]-[7] Recently, this CMFD method has been
employed for the acceleration of the 2-D transport calculation in the CASMO-4 code[8,9] with
remarkable results. Similar works are reported in Refs. 10 and 11. In the CMFD method, a
current correction coefficient is introduced to preserve the interface currents between coarse
meshes, which are results from the solutions of transport sweep.
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In this paper, we present a comparison of the convergence and stability properties of the two
acceleration methods. Since both methods are nonlinear, they are linearized and then Fourier-
analyzed. The convergence analysis of the CMR method is already available in the literature but
is included here for completeness. The convergence analysis of the CMFD method is, however,
presented here for the first time to the best of our knowledge.

2. CMR AND CMFD METHODS IN SLAB GEOMETRY

2.1. Equations of Coarse Mesh Rebalance (CMR) Method

In the slab geometry, the neutron transport equation is written as follows:
1+1/2

d
v )+ o' (x, 1) = o () (x) + q(x), (1)

where the standard notations are used and / denotes the iteration index.[3]

To derive the CMR equations, let us consider a coarse mesh which contains several fine meshes
as shown in Fig. 1.
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Fig.1. Configuration of coarse meshes and fine meshes in slab geometry.

When angular integration and spatial integration over the coarse mesh are performed, we obtain
the following equation:

+,0+1/2 —1+1/2 1+1/2 +,[+1/2 —I+1/2 _
(‘]z’ +J; +th(o-ki_o-s,ki) i }_Ji—l -Jia _thqkiﬂ (2)
k k
where
, 1 N/2
+,0+1/2 _ 1+1/2
Ji - Ezwn :un|l//n,i+l/2’ Hy > O’ (3)
n=1
1+1/2 1 Y 1+1/2
—1+1/2 _ +
Ji _5 an /un l//n,i—l/Z’ /un < 0’ (4)
n=N/2+1

i denotes coarse mesh and & fine mesh, and ( x,,w, ) are the discrete ordinates quadrature set.

Following the standard procedure, we first change all the indices in Eq. (2) into /+1. Then the
rebalance factor, f; , is defined on coarse mesh i and it is allowed to be discontinuous at the

interfaces between coarse meshes. Since neutrons contributing to J;” are leaving the coarse mesh

l
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iweuse f; ,and for J;,,, whose neutrons are from the coarse mesh i+1 to the coarse mesh i we
use fi+1
‘//rllil/z S ‘//ii/lz/z s M, >0, (5)
‘//;itil/z 3 ‘//;itlflz/z s M, <0. (6)
The CMR equation for slab geometry is then derived easily as
[J;r,lJrl/Z + Ji—,l+l/2 + zhk(akj _ Gs,k,)¢l+l/2jfl+l J+ l+1/2‘flltl Jl—Jr{+l/2 l++11 — thQkf (7)
k

If the vacuum boundary condition is imposed on the left side (coarse mesh 1), then J; =0 and
the CMR equation is given as

A S o - T ®
k

If the reflective boundary condition is given on the right side (coarse mesh I), then J; =J,,, and
f; = f1,,- Thus, the CMR equation is derived as

[JI_JH/Z+th(o'k1_o'.s-,k1)¢l+”2J M -Jr = th‘]u- 9)
k 2

If the reflective boundary conditions are given on both sides of the problem, the incoming
boundary angular flux should be updated on each iteration as follows:

'/’rl,Jrll/z lel '/’zlv++11/2n 12 M, >0(m=1,--,N/2), (10)
‘//,lz+11+1/2 Hl ‘/’zlx;rll/znuuza 1, <0(n=N/2+1,-,N). (11)

As the solution converges, the rebalance factor f; approaches unity, so the detailed balance is
satisfied in CMR.

2.2. Equations of Coarse Mesh Finite Difference (CMFD) Method

The form of CMFD equations is similar to that of the usual finite difference equation with a
mesh-centered scheme, but there is an additional current correction factor, D, which is defined
as[8]-[11]

R B J1+1//22 +5i+1/2(¢ll+1/2 ¢l+1/2)

b2 == ¢l_1++11/z +¢:11+1/2 ) (12)
where
By =220 Doy P ) (13)
D,/h.+ D, /h,,
J 11111//22 = an M, ‘//,l,:%z/z . (14)

The CMFD equation for coarse mesh i with current correction factors is
~ D0l =01 )= Dol + 81 )+ D@ — gl )+ Dl + 012)
+th(o'k_o'sk) B zhk% (15)
k

Rewriting Eq. (15), we obtain
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~ (D1 +Dz+1/2)¢114:r11 —(Dy, =Dy 1/z)¢zl+l
+(Dy1 = Dytyo + Dyyjo + Dyyjy + 1o )P = zhqu , (16)
k
where ¢/"! ——Zh é.

l

If the vacuum boundary condition is given on the left side (coarse mesh 1), then J,7, =0 so that

+1/2 _ 1+1/2 1+1/2 [+1/2 l 1/2
J17—2 - 1/2(¢+ ¢+ ) 1/2(¢+ ’ )

(17)
=52wnﬂnl//i*f/§ 0+— Zw JTRZER
n=1

n N/2+1
The CMFD equation with vacuum boundary condition is then derived as, using the mesh average
scalar fluxes of coarse mesh 1,

= (Dy, '*‘D3/2)¢1+1 + (D35 = D35 + (0 _O's1))¢l+l
| & ) g
_(5 Z n/unl//nJrl/Z} 1+1/2 thqkl (18)
=N/ 2+41

The use of a ratio of the mesh average scalar fluxes in Eq. (1 8) comes from the concept of the
CMR factor.

If the reflective boundary condition is given on the right side (coarse mesh I), then J, =0 so that

Ji03 = D@ + 47" = Dy (4157~ 7 = 0. (19)
Thus, the CMFD equation with reflective boundary condition is given as

(D12 =Dy )85 +(Dyyjy + Dyyyy + hy(0, =0, )y th qu.  (20)

In the case of the reflective boundary conditions on both sides, the incoming angular flux is

updated using the coarse-mesh average scalar fluxes:
1+1

l//rl:ll/Z = 111/2 l//]l\;jl/znl/b Hy, >O(n:1""’N/2)’ (21)
1
1+1 o an
Wn+1+1/2 ﬁﬁ/’]\alnul/z» U, <0(n=N/2+1--,N). (22)

1

3. CONVERGENCE ANALYSES OF CMR AND CMFD

To investigate convergence or stability of some acceleration methods, Fourier analysis is widely
used. To begin Fourier analysis, nonlinear methods should be linearlized and a model problem of
an infinite medium, constant cross section, and flat source with a uniform mesh is considered.
Then the Fourier ansatz is applied, which has the standard Fourier component

[exp( jAx), j=+/—1] and the eigenvalue( @ ). The spectral radius( p ) is the maximum of the
eigenvalues. If p<I, the method is stable.

3.1. Fourier Analysis of CMR

In the case of CMR, a detailed stability analysis was performed by Cefus and Larsen.[12] They
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provide a procedure of linearlization to accomplish analysis of the CMR method, which is

originally nonlinear. In the derivation, diamond differenced high-order equation is used. For the
general coarse mesh rebalance (p fine meshes per coarse mesh), they derived an eignenvalue

problem in a form:
wA=[H-nUV-(I1-H)]A =L, A,
where
A=A A(z'—l)p]T’

01 0 1 0 0

K= %[exp(j )M —exp(—j 7)1] x [exp(j7)M +exp(—j )],

N
C 2 -1
H=— I1+Q2u, /h)’K-K],
5 2wl 2, /) K K]

n=l

V =[exp(jz(l- p))---exp(jr(p—1)], U=[exp(jr(p—1) - exp(jr(l- p))I',

n= he r= 2l 7—§#w
2ysin’(pr)+ph(l-c)’ 27 o T T
The spectral radius( p) is
p=sup, |o(7)|.

For the case of fine mesh rebalance (p=1), the eigenvalue( @) is expressed explicitly as

he
a)_l—(l—’(){l-i' 27Sin2(f)+h(1_c)} ’

where

N
K =%;w,, /{((2u, tan7)/ h)> +1}.

(23)

(24a)

(24b)

(24¢)

(244)
(24e)

(241)

(25)

(26)

(27)

Figs. 2, 3, and 4 show the spectral radii of CMR for various scattering ratios when p=1, p=2, and

p=4, respectively, using the S;¢ Gauss-Legendre quadrature set. Since the Fourier analysis is
performed after linearization around the solution of an infinite medium problem, it does not

apply to the case of c=1. Therefore, we have chosen values for ¢ upto 0.9999. It is indicated that
for given ¢, when p=1, CMR is unstable for o% too small or too large. The case of a large p is

generally more stable compared to the case of p=1, especially for thick mesh sizes.

3.2. Fourier Analysis of CMFD

This section describes the procedure of Fourier analysis of CMFD. For the high-order equations,

the diamond differencing (DD) scheme is used as
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n

If the medium is infinite with constant cross sections and uniform meshes, the low-order

h

w21
. ——
2

equations of the CMFD method are given by

2
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Fig. 2. Spectral radius of CMR for various scattering ratios for p=1.
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Fig. 3. Spectral radius of CMR for various scattering ratios for p=2.
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Fig. 4. Spectral radius of CMR for various scattering ratios for p=4.

(Dz+1/2 JFD;+1/2)¢II+1 - ~1 12 — i 1/2)¢zl+1
+ (Di+1/2 _Di+l/2 +Di—l/z +Di—1/2 +hpo, )¢il+1 = phQ, (30)
I1+1
£+1 — ]£+l/2 z¢ Z 1/2 (31)
- o
where
oc=1, o,=c, (32a)
(D;/h) (D, /h.,)
) = nl_ 2 — D /(ph)=1/3oph) =1/(3 ph), 32b
=2 e D Th (ph) =1/(Boph) =1/(3 ph) (32b)
A Jll+1 + (¢ll+l/2 _¢il+l/2)/(3ph)
Diljll//z2 - 2 ¢1++11/2 +¢1+1/2 > (32C)
i+1 i
l+1 Z ¢l+1 , (32d)
kez
‘]11:11//22 - zwn lun V/rl:llJr/lz/Z . (326)
n:l

The CMFD method is nonlinear, so the CMFD equations are linearized around the solution of
the model problem. If we define the following ansatz for linearization:

¢ =0/c,(1+e¢™), (33)
¢l+1/2 _Q/O_ (1+8gl+1/2) (34)
vl =0/o,(0+&50), (35)

and choose the O( ¢) term, the following linear equations are obtained after some algebra:
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u fﬂiiz‘fﬂfn +§1€§cl-¢/—12/2+§r11:21—/12/2 _ §llm (36)
h 2
N g2 1+1/2
l+1/2 Snksi/2 +§n k-1/2
—, (37)
22"
1 I+1 2 I+ _ l+1 1+1
-+ = S +hpo,
3 th—l 3phgl 3 h p g
1 /2 2 a1 an 14172 /2
+ho +ho. , 38
R A e T8 Zg Z(g -s0).  (39)
gl+l gl+1/2 +gl+l 1 Zng/Z (39)
k =Sk i k-
P

The O(1) terms are automatically satisfied and the O( &”) terms are neglected. When Eq. (38) is
derived the following balance equation was used, which was also used to linearize the CMR
equation:

N
S ElT £ ~ho Dt P <ho, Bl (40)
n=l1 k

We note that Eq. (38) is in the same form as the 1ncons1stent diffusion synthetic acceleration
(DSA) equation. Thus, it is expected that the convergence of the CMFD method may be similar
to that of the inconsistent DSA method.

In the case of a uniform mesh and an infinite medium, the following Fourier ansatz are
appropriate:

g; = o' Aexp(jAx,), (41)

Q'li = a)lAk exp(jAx,), Ay =4, (42)
¢ = o' Bexp(jix,), (43)
g/imz = wlB exp(jAx;), By =By, (44)
Sg,i+1fl+/12/2 =o' a, ; XP(J Xy 1/2)s Gy = Dykvp: (45)

Introducing these Fourier ansatz into Eqs. (36) and (37), the Fourier components cancel out. The
high-order equations (Egs. (36) and (37)) are rewritten in the following matrix form,
interestingly in a similar form of the CMR method:

B=H A, (46)

where B=[B
(244).

1", A=[4 Ai,1" . The matrix H was already defined in Eq.

(i-)p+1 *° (1 Dp (i-p+l 7

Rewriting Eq. (38) using the Fourier ansatz,

iJrhpO' —icos(2pr) wA = i-‘rhpO'a—iCOS(sz) B
3ph 3ph

3ph 3ph
+he) U(k)(B, - 4,), (47)
k
where
Uk)=exp(j(2p—1-2k)). (48)

Eq. (39) is rewritten as
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Uk)w A, =U(k)B, + wA —lZU(k)Bk =U(k)B, + @A - B, (49)
P
where
B =lZU(k)Bk. (50)
P %
Combining Eqgs. (47) and (49), the following eigenvalue problem is obtained:
wA =[H-0UV-(I-H)]JA =Ly A, (51)
where
0 = he /[ {4sin*(p7)} /(3 ph)+ hp(1-c)]. (52)
For the case of fine mesh rebalance (p=1), the eigenvalue( @) is expressed explicitly as
he
=l-(1-x){1+ . 53
© ( K){ (4sin® 7)/(3h) + h(1 —c)} (53)

It is interesting to note that the eigenvalue equations of CMR and CMFD methods have the same
form, the only difference being substituting 2/(3oph) for y.

Figs. 5, 6, and 7 show the behavior of the spectral radius of CMFD for various scattering ratios
when p=1, p=2, and p=4, respectively, using the S;s Gauss-Legendre quadrature set. Fig. 8 shows
the spectral radius of the CMR and the CMFD methods when the scattering ratio is 0.99. The
spectral radius of the CMFD method is something like that of the common mesh-centered
inconsistent DSA.[13] As the mesh size increases, the spectral radii of the CMFD method also
increase similarly as (actually faster than) the CMR method, eventually both becoming unstable
(or ineffective). The behavior of coarseness (p) in CMFD is wider in the stable region (lowers the
spectral radius below unity) than the fine case (p=1). The coarseness in CMFD also widens the
inefficient region as the “spectral wave” moves leftward (Fig. 8). The CMFD method is fast
converging as is DSA when the mesh size is small enough, because the spectral radius is less
than 0.23.
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Fig. 5. Spectral radius of CMFD for various scattering ratios for p=1.
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Fig. 6. Spectral radius of CMFD for various scattering ratios for p=2.

Spectral Radius (p)

Fig. 7. Spectral radius of CMFD for various scattering ratios for p=4.
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Fig. 8. Spectral radius of CMR and CMFD for various p’s (¢=0.99).

4. NUMERICAL COMPARISONS OF CMR AND CMFD

4.1. Consistency of Solutions

When an acceleration method is considered, it is important to check whether the converged
solution of the low-order equation (acceleration equation) is the same as that of the high-order
equation (transport equation) and identical to the unaccelerated solution. The CMR method
clearly has such a consistency of solutions because it uses spatial balance without additional
approximation. But the CMFD method uses mesh-average scalar fluxes as unknowns and thus
requires careful treatment of the boundary conditions, particularly the vacuum boundary
condition; otherwise it may break the consistency. The treatment of Eq. (18) based on the CMR
factor concept ensures the consistency. For numerical demonstration, two kinds of tests are
performed. The first test is a mono-energy, homogeneous, isotropic, one slab problem which is
depicted in Fig. 9.

Vacuum

Q=1.0 #/cm? sec |
o=lcm’ (o =0.9cm’! |

Vacuum I

0cm 10 cm

Fig. 9. Configuration of test problem 1.

Vacuum boundary conditions are imposed on both sides and the problem size is 10 cm. The
convergence criterion is 1.0E-9 for the maximum pointwise scalar flux. Diamond differencing
(DD) scheme is considered for spatial discretization and S;¢ Gauss-Legendre quatrature is used.
The mesh size is 1 cm and numbers of coarse meshes are chosen as 5 and 10 and thus the
corresponding numbers of fine meshes are 2 and 1, respectively. Table I shows the solutions of
source iteration (SI), CMR, and CMFD. Source iteration (SI) uses the solution of the high-order
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equation as the next iteration without any low-order equations. Thus the solution of SI means no
acceleration. From Table I, we note that there are no differences among SI, CMR, and CMFD
solutions even with different coarse meshes.

Table 1. Scalar flux distribution for various methods

Methods SI CMR CMR CMFD CMFD
(high- (low- (high- (low-
order) order) order) order)

# of 144 (32%,24°) (22,33)
iterations

Mesh 1 4320019 | 4.320018 | 4.320019 | 4.320018 | 4.320019

Mesh 2 6.873371 6.873370 | 6.873370 | 6.873370 6.873370

Mesh 3 8.054203 8.054202 8.054202 8.054202 8.054202

Mesh 4 8.753147 8.753145 8.753145 8.753145 8.753145

Mesh 5 9.027606 9.027604 | 9.027604 | 9.027604 9.027604

Mesh 6 9.027606 9.027604 | 9.027604 | 9.027604 9.027604

Mesh 7 8.753147 8.753145 8.753145 8.753145 8.753145

Mesh 8 8.054203 8.054202 8.054202 8.054202 8.054202

Mesh 9 6.873371 6.873370 | 6.873370 | 6.873370 6.873370

Mesh 10 | 4.320019 | 4.320018 | 4.320019 | 4.320018 | 4.320019

% Number of iterations for 10 coarse meshes,
®. Number of iterations for 5 coarse meshes.
Reflective Fuel Absorber] Water 1 Water 2 Vacuum
x=0.0 10.0 12.0 15.0 20.0 cm
Fig. 10. Configuration of test problem 2.
Table II. Cross sections for materials
Group Oy Otg->1 Olg->2 Olg->1 Olg.>2 9de
Fuel 1 0.3 0.27 0.01 0.09 0.002 5sin(nx/10)
2 1.0 0.001 0.9 0.0002 0.08 0
Absorber 1 0.2 0.18 0.01 0.08 0.003 0
2 3.53 0.001 0.53 0.0003 0.06 0
Water 1 1 0.401 0.32 0.08 0.07 0.003 5
2 1.30 0.002 1.29 0.0004 0.2 5
Water 2 1 0.401 0.32 0.08 0.07 0.003 0
2 1.30 0.002 1.29 0.0004 0.2 0
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The second test is a two-group, heterogeneous, anisotropic, multi-slab problem as shown in Fig
10. Table II shows the cross sections for each material. Convergence criterion is 1.0E-6 and the
diamond differencing (DD) scheme is used with Sg Gauss-Legendre quadrature. Fig. 11 shows
the distribution of fast scalar flux and Fig. 12 shows the distribution of thermal scalar flux. For

this test problem 2, the analytic solutions (spatial truncation error-free) are provided by

IMGEF.[14] Table III shows the fast and thermal flux from SI, CMR, and CMFD. We note that

both CMR and CMFD have the consistency of solutions.
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11. Distribution of fast scalar flux for various methods.
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Fig. 12. Distribution of thermal scalar flux for various methods.
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Table II1. Fast and thermal flux solutions by various methods

Thermal scalar flux

IMGF DD(SI) DD(CMR) DD(CMFD)

80.08968
81.77442
84.89927
87.65401
88.97817
88.25320
85.24730
80.10714
73.35153
65.88963
59.19893
56.61651
55.40517
51.42091
45.06130
34.82836
24.59202
18.14178
13.28440
5.44690

X Fast scalar flux
(cm) | IMGF DD(SI) DD(CMR) DD(CMFD)
0 | 80.0821 80.08967 80.08968
1 | 81.7739 81.77441 81.77442
2 | 84.8993 84.89926 84.89927
3 | 87.6545 87.65400 87.65401
4 | 889791 88.97816 88.97817
5 | 88.2545 88.25319 88.25320
6 | 85.2486 85.24730 85.24730
7 |80.1082 80.10713 80.10714
8 ]73.3524 73.35152 73.35153
9 |65.8901 65.88962 65.88963
10 |59.1947 59.19892 59.19893
11 |56.6129 56.61649 56.61650
12 |55.4018 55.40516 55.40517
13 | 51.4168 51.42089 51.42091
14 | 45.0571 45.06128 45.06130
15 | 34.8274 34.82835 34.82837
16 |24.5941 24.59202 24.59203
17 | 18.1426 18.14178 18.14180
18 | 13.2847 13.28441 13.28442
20 | 5.44722 544691 5.44691

8.24275 8.24354 8.24354
8.27467 8.27525 8.27525
8.33493 8.33526 8.33526
8.35586 8.35603 8.35603
8.27073 8.27085 8.27086
8.02301 8.02321 8.02321
7.56696 7.56738 7.56738
6.86103 6.86177 6.86177
5.85031 5.85146 5.85146
4.42285 4.42528 4.42528
1.99504 1.99498 1.99498
0.54028 0.53692 0.53692
38.0336 38.03395 38.03418
97.0065 97.01582 97.01651
119.999 119.9953 119.9963
116.781 116.7853 116.7865
99.9597 99.96303 99.9643
81.3391 81.34252 81.34367
60.7159 60.71869 60.71960
12.5308 12.53137 12.53156

8.24354
8.27525
8.33526
8.35603
8.27086
8.02321
7.56738
6.86177
5.85146
4.42528
1.99498
0.53692
38.03418
97.01649
119.9963
116.7864
99.9643
81.34369
60.71965
12.53157

4.2. Convergence of Solutions

To check the convergence, the numerical spectral radius and the number of iterations are
compared for CMR and CMFD methods. The matrix forms of CMR and CMFD are in tri-

diagonal form in slab geometry. Therefore, the CMR and CMFD equations are directly solved.
Test problem 1 is considered. Fourier analysis is confirmed with various cases of coarseness and
various scattering ratios. Tables IV, V, and VI show the numerical spectral radii and the number
of iterations for p=1, p=2, and p=4, respectively. These results indicate the CMFD method has
better convergence than the CMR method when the mesh size is small, but for a large mesh size

the two methods exhibit similarly divergent behavior. These results are in agreement with the

Fourier analysis.
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Table IV. Number of iterations and numerical spectral radius (p=1)

ch? Source Iteration CMR CMFD

b

) Te=08°[ =09 | c=1.0 | =08 | ¢=0.9 | c=1.0 | c=0.8 | ¢=09 | c=1.0
0.01 794 145 684 | NCI | NC. | N.C. 11 12 13
(1000) | 0.7806¢| 0.8781 | 0.9757 0.1526 | 0.1792 | 0.2061
0.02 79 145 694 | NC. | NC. | NC. 11 12 13
(500) | 0.7806 | 0.8781 | 0.9757 0.1525 | 0.1791 | 0.2087
0.1 79 145 694 147 | N.C. | N.C. 11 12 13
(100) | 0.7806 | 0.8781 | 0.9757 | 0.9097 0.1494 | 0.1758 | 0.2051
0.2 79 145 693 32 139 | N.C. 11 12 13
(50) | 0.7806 | 0.8781 | 0.9757 | 0.6178 | 0.8947 0.1402 | 0.1661 | 0.1947
1.0 78 144 686 24 32 51 18 22 28
(10) | 0.7803 | 0.8779 | 0.9754 | 0.4494 | 0.5551 | 0.6881 | 0.3335 | 0.4041 | 0.4872
2.0 78 143 665 53 199 | NC. | NC. | NC. | NC.
(5) 10.7797 | 0.8772 | 0.9746 | 0.6926 | 0.9071

% Total cross section (o) x Mesh size of fine mesh (h), °: Number of coarse meshes,
°: Scattering ratio, *: Number of iterations, °: Numerical spectral radius, ": Not converged.

Table V. Number of iterations and numerical spectral radius (p=2)

oh* CMR CMFD
b

() =028 =09 =1.0 c=0.8° =09 =1.0
0.01 N.C° N.C. N.C. 1 12 13
(500) 0.1526 | 01792 | 0.2088
0.02 N.C. N.C. N.C. 1 12 13
(250) 0.1527 | 01793 | 02088
0.1 34 163 N.C. 11 12 13
(50) 0.6300 | 0.9098 0.1553 | 01828 | 02112
0.2 17 31 86 1 12 14
(25) 03419 | 05667 | 08066 | 0.1654 | 01929 | 02241

1.0 21 24 31 21 33 28
(5) 04171 | 04820 | 05687 | 04723 | 05588 | 04872
25 36 46 64 36 46 N.C.
) 05834 | 06563 | 07292 | 05834 | 06563

% Total cross section (o) x Mesh size of fine mesh (h), °: Number of coarse meshes,
¢ Not converged, % Scattering ratio, °: Number of iterations, ": Numerical spectral radius.
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Table VI. Number of iterations and numerical spectral radius (p=4)

oh* CMR CMFD
b
() =08 c=0.9 C=1.0 c=0.87 c=0.9 =1.0
0.01 N.C° N.C. N.C. 1 12 13
(250) 0.1528" | 0.1795 | 0.2089
0.02 N.C. N.C. N.C. 1 12 13
(125) 0.1536 | 0.1804 | 0.2098
0.05 34 169 N.C. 1 12 14
(50) 06322 | 09127 0.1590 | 0.1869 | 02174
0.1 8 32 90 12 13 14
(25) 03614 | 05706 | 08136 | 0.1806 | 02096 | 0.2426
0.625 29 35 46 29 48 N.C.
4) 05467 | 06189 | 06867 | 05414 | 0.6613
0.8333 31 40 56 33 166 N.C.
3) 05374 | 06128 | 06994 | 0588 | 08912
1.25 45 62 97 45 62 N.C.
) 06572 | 07394 | 08216 | 06572 | 0.7394

% Total cross section (o) x Mesh size of fine mesh (h), °: Number of coarse meshes,
¢ Not converged, % Scattering ratio, °: Number of iterations, ": Numerical spectral radius.

5. CONCLUSIONS

The coarse mesh rebalance (CMR) and coarse mesh finite difference (CMFD) methods are
appealing acceleration methods for the neutron transport calculations. This is because it is
extremely simple to apply them regardless of the discretization schemes of the transport
equation. The coarse mesh can be chosen conveniently as simple in shape and size and overlayed
on the fine meshes. The fine meshes inside a coarse mesh can be irregular and unstructured,
depending on the solution scheme of the transport sweep.

This paper presented convergence analyses (linearized Fourier analyses) of the two acceleration
methods with comparison. As is known in the literature, CMR is conditionally stable in that it is
unstable for mesh size too small or too large. As the number of fine meshes in a coarse mesh
increases, CMR tends to be stable but becomes inefficient. The results of the study in this paper
show for the CMFD method that it is also conditionally stable (in a companion paper|[15] in this
Proceedings, an unconditionally stable coarse-mesh acceleration method is described). The
behavior of coarseness (p) of CMFD is similar to that of CMR. The behavior of the spectral
radius of the CMFD method is reminiscent of and similar to that of the inconsistent DSA. The
CMFD method is fast converging when the mesh size is small as is DSA, but it becomes
divergent or ineffective as the mesh size increases as does CMR. These results of convergence
analyses are in agreement with the numerical results of the test problems solved. Similar results
are also obtained for eigenvalue problems.
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