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ABSTRACT 
 

We perform asymptotic analysis to the spatial weights of the Arbitrarily High Order Transport  
(AHOT) method that employs the method of characteristics as a means to relate surface and 
average fluxes of a computational cell in two-dimensional Cartesian geometry. Previously, the 
spatial weights of the AHOT’s final discrete-variable equations have shown some numerical 
instabilities as the cell optical thickness approaches zero. Our analysis is based on identifying the 
components of the spatial weights responsible for these instabilities, then expanding them in a 
truncated power series of the cell optical thickness that causes the instabilities when approaching 
zero. We then derive the condition necessary to eliminate the singularity as the cell optical 
thickness approaches zero. We show that the method we adopted for computing the asymptotic 
spatial weights is very effective in eliminating these instabilities by comparing the asymptotic 
weights to the full analytic ones. 
 
Key Words: asymptotic analysis, characteristics method, high-order transport, optically thin cells. 

 
 

1. INTRODUCTION 
 
Neutral particle transport has constituted one of the most difficult problems in most nuclear 
engineering applications. Any precise description of neutral particle transport must involve 
treatment of particles in phase space (space, energy, and time) as influenced by interactions with 
the host medium. Most of the recent research efforts have evolved around issues related to 
developing efficient numerical solutions of the multidimensional neutral particle transport 
equation. The performance of numerical methods for solving the transport equation has been a 
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major issue in recent research due to their heavy demand on computational resources. In virtually 
all cases, there has been always a trade-off between the solution accuracy and the overall 
computational cost. In some cases, though, the solution accuracy is more important than the 
additional computational cost needed to obtain an accurate solution. For those cases, high-order 
transport methods have evolved to provide such accurate solutions with reasonable additional 
computational cost.  
 
An Arbitrarily High Order Transport method of the Nodal type (AHOT-N) has been introduced 
by Azmy [1] in general-dimension Cartesian geometry, and manipulated in a weighted diamond 
difference form. The final discrete-variable AHOT-N equations are fully specified by one spatial 
weight per dimension per discrete ordinate, as opposed to many coefficients in other nodal 
methods. The numerical results he presented for some two-dimensional test problems indicated 
that a very high order method, order five, for example, was more computationally efficient, in 
terms of the computer storage and CPU time, in deep penetration problems than first order 
methods. Shortly after the introduction of the AHOT-N method, Azmy introduced a two-
dimensional “characteristic” version of the AHOT method [2] along the same lines as the AHOT-
N method. The main difference between the AHOT-N and the AHOT-C methods is that in the 
latter, the two-dimensional transport equation is locally solved by the method of characteristics 
to provide the necessary relationship between the in-cell and the surface evaluated moments of 
the angular fluxes. One of the most interesting features of the AHOT-C method is that the spatial 
weights are symmetric about the origin in the angular space, which implies that, if the discrete 
ordinates used in the angular approximation were symmetric about the origin, only one quarter of 
those coefficients need to be stored.  
 
The AHOT code was developed to implement the Nodal and the Characteristic options. The code 
is a steady state, fixed external source, multigroup (with isotropic down scattering only) for 
solving the transport equation in two-dimensional Cartesian geometry. 
 
It was observed in running the Characteristic option in the AHOT code that numerical 
instabilities occur when very thin cells are used. By generating gray-scale plots of the flux and 
source multipliers (i.e., the spatial weights), it was shown that these become contaminated with 
arithmetic imprecision as the cell size approaches zero. Recently, Azmy [3] has performed thin-
cell limit analysis to eliminate these imprecision effects from the flux multipliers. 
 
The purpose of this work is to reconsider the spatial weights of the AHOT-C method as the cell 
size approaches zero. Specifically, we show that the derived asymptotic expressions are much 
more accurate than the exact expressions in this limit.  
 
The remainder of this paper is organized as follows. In Section 2 we review the derivation of the 
AHOT method of the characteristic type and derive the full expressions of the spatial weights. In 
Section 3 we perform asymptotic analysis on the full expressions of the spatial weights and 
derive alternative expressions that should be used in situations where the cell size approaches 
zero. Section 4 shows comparisons of the analytical (full) and asymptotic expressions of the 
spatial weights and establishes the effectiveness of the thin-cell limit analysis performed in 
Section 3. We then conclude this paper by offering some suggestions and improvements for 
future work in Section 5. 
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2. REVIEW OF BASIC EQUATIONS OF THE AHOT-C METHOD 
 
In this section we review the basic equations of the AHOT-C method and define the full, analytic 
expressions of the flux and source multipliers (weights).  
 
The Characteristic methods are based on the fact that, in Cartesian geometry, the neutron 
transport equation possesses straight-line curves along which the streaming operator can be 
written as a total differential in the characteristic length. We consider the following steady state, 
monoenergetic, discrete-ordinates approximation of the transport equation in two-dimensional 
Cartesian geometry, 
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where l is the discrete direction index, and ls is the source term which includes scattering and 
fission sources. The rest of the notation is standard. The main ingredients of the AHOT-C are as 
follows: 
 
1. Taking the ),( ji -order moments of the transport equation (1).  The resulting set of equations 

relates the surface-evaluated moments to the cell-averaged moments of the angular flux. 
2. Solving the transport equation (1) along the characteristic curves penetrating each cell.  The 

resulting set of equations relates the angular flux at any point ),( yx  within the cell to any 
other point ),( oo yx on the same characteristic curve, and the volumetric source moments.  By 
a proper choice of the two points mentioned above, one can relate the surface-evaluated 
fluxes to the source moments. 

3. Solving the discrete-variable equations resulting from steps (1) and (2). 
 
Before proceeding with the final equations, we introduce the following definitions. First, we 
define the surface moments of the angular fluxes as follows: 
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where )( czPk is the k-th order Legendre polynomial, normalized over the interval [ ]cc +− ,  
according to the relations 
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where kk ′δ is the Kronecker delta symbol. Second, we define the cell flux and source moments 
by: 
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Upon taking the Legendre moments of the transport equation (1), we obtain the first set of the 
discrete-variable equations, 
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where the asterisk (*) on the summation operator indicates that the summation index is 
incremented by 2 and O(i)=mod2(i+1). Next, we solve the transport equation (1) along the 
characteristic curves given by ( ) ( ) ηµ ooo yyxxtt −=−=− , where ( )oo yx ,  and ( )yx,  are any 
two points located on the characteristic line as shown in Fig. (1). 
 

 

 
 

Figure 1. Characteristic curve passing through a computational cell. 
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On any characteristic curve, the transport equation (1) reduces to, 
 

S
dt

d
T =+ ψσψ ,     (8) 

 
where t is a parameter on the characteristic curve such that ott −  represents the distance between 
an arbitrary starting point ( )oo yx ,  and the point ( )yx,  on the same characteristic. Integrating Eq. 
(8) using an integrating factor yields, 
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The point ( )oo yx ,  is usually chosen on one of the cell boundaries where the incoming flux is 
known, so that ( )otψ  is known. In order to develop the second set of the discrete-variable 
equations, we expand the volumetric source in a Legendre expansion, consistent with the 
moments taken in the derivation of Eq. (6), 
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Substituting the parametric equations of the characteristic curve t  into the source expansion (10) 
and inserting the resulting expression into the R.H.S. of Eq. (9) yields, 
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Finally, substituting the equations of the characteristics into Eq. (11) gives, 
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Equations (13) and (14) are equivalent and they represent the relationship between the flux at 
any point ( )yx,  within the cell, the flux at any other point ( )oo yx , on the same characteristic 
curve, and volumetric source moments. Now we calculate the outgoing flux surface-moments in 
terms of the incoming flux surface-moments. In order to do so, we evaluate Eq. (13) or Eq. (14) 
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on the appropriate outgoing surfaces for each member of the set of discrete ordinates, then take 
the l -th Legendre moment of the resulting expressions along these surfaces.  To set the stage for 
the development of the equations of the AHOT-C method, we consider a rectangular cell of 
dimensions ba 22 × , which is centered at point ( )0,0  (see Fig. (2)).  
 

 

 
The letters L, R, T, and B are used to refer to quantities evaluated at the left, right, top, and 
bottom faces of the cell. Also, for simplicity, we assume that ηµ, > 0, that is the neutrons are 
flowing from left to right and bottom to top. We also introduce the following parameters, 

µσε aTx ≡ , ησε bTy ≡ , 







≡

µ
ηθ 1-tan , 

µ
ηρ ≡ , and yxba εερφθζ ==≡ tantan . Here xε , 

and yε  are the cell optical thickness in the x and y directions and ζ  is a measure of the relative 
orientation of the cell with respect to the direction of the incident radiation. According to the 
value of ζ , there are three distinct possibilities: ζ > 1,  ζ < 1, and ζ = 1. The difference between 
these cases is important in determining, for a given direction of radiation incidence, which face 
will contribute to the outgoing flux.  For example, in the case where ηµ, >0 and ζ >1, the 
incident flux on the bottom face of a cell will contribute to the outgoing fluxes from both the 
right and top faces of the cell.  On the other hand, the incident radiation on the left face will 
contribute only to the outgoing flux from the top face of the cell. In another case where, for 
example, ηµ, >0 and ζ <1, the incident flux on the left face of a cell will contribute to the 
outgoing fluxes from both the right and top faces of the cell. Also the incident flux on the bottom 
face of the cell will contribute only to the outgoing flux from the right face. Consider for 
example the case where ηµ, >0 and ζ >1.  To identify the contribution of each face to the 
outgoing flux, we draw a line from the upper right corner of the cell (point C) that is parallel to 
the direction of incidence of radiation (characterized by ηµ, ) and intersects the bottom face of 
the cell at point E (see Fig. (3)). We draw another line from the bottom left corner of the cell 
(point A) that is parallel to the first line and intersects the top face of the cell at point F. These 

Figure 2. Schematic of a computational cell for the flux moment 
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two lines divide the cell into three regions (labeled (I), (II), and (III)).  In region (I), any radiation 
enters the cell at the bottom face between points E and B, will contribute to the flux exiting the 
cell at the right face.  In regions (II) and (III), radiation that enters the cell at the bottom face 
between points A and E, or at the left face will contribute to the exiting flux at the top face of the 
cell. 
 
In region (I), the incoming flux at the bottom face is given by, ( ) ( )bxx ooB −≡ ,ψψ  and the 
outgoing flux is calculated at the right face as ( ) ( )yayR ,ψψ ≡ . Taking the l -th Legendre 
moment of both sides of the above equation by multiplying both sides by ( ) bbyPl 2  and 
integrating over y  from b−  to b+  yields, 
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where the function liT ,  is defined as, 
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and ijlS  is given by, 
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Similar calculations are performed to compute the outgoing flux at the top face of the cell. We 
show the final flux moment equations: 
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where the functions liN , , liM , , and ijlR  are given by, 
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The discrete-variable equations, Eqs. (7), (15), and (18), and the global boundary conditions are 
solved via the standard mesh sweeps in each discrete direction. For example, for ηµ, >0, given 

( )byl −,ψ  and ( )alx −,ψ  from adjacent cells or the global boundary conditions, Eqs. (15) and (18) 
are solved for ( )alx,ψ  and ( )byl ,ψ , where Il ,...,0= , then Eq. (7) is solved for ijψ , where 

Iji ,...,0, = .  At this point, it is worth mentioning that the practical motivation for developing the 
AHOT-C method is that higher computational efficiency of high order methods in problems with 
large homogeneous regions is achievable.  Moreover, by using high order methods, consistent 
interpolation formulae for computing detailed flux distributions within large cells and on 
surfaces of irregular meshes are obtained, which produce very accurate reference solutions to 
benchmark problems. 
 

3. ASYMPTOTIC ANALYSIS OF THE SPATIAL WEIGHTS OF THE AHOT-C 
 
It was observed in running the characteristic option in the AHOT code that numerical instabilities 
occurred when the computational cells are optically thin. Plots of the flux and source multipliers 
showed that these become contaminated with arithmetic  imprecision as the cell size approaches 
zero. Hence a reconsideration of the spatial weights for the AHOT-C is necessary to remove this 
undesired behavior.  
 

3.1 Introduction 
 
The term flux multipliers is defined as the spatial weights which multiply the surface flux 
moments in the final discrete-variable equations of the AHOT-C method. For example, in Eq. 
(15), the terms ( ) ( )ζε ,12 , yliTi +  are the flux multipliers in region (I) of a computational cell that 
multiply the incoming surface flux moments at the bottom face in the case where ηµ, >0 and 
ζ >1.  Similarly, in Eq. (18), the quantities ( ) ),(12 , ζε yliNi +  and ( ) ( )ζε ,12 , xliMi +  are the flux 
multipliers in regions (II) and (III) of a computational cell that multiply the incoming surface 
flux moments at the bottom and left faces in the case where ηµ, >0 and ζ >1. We can think of 
the flux multipliers as a weighting of the contribution of the incoming flux moments to the 
outgoing flux moments of a cell. In the next section we will define the first, second, and third 
flux multipliers and review the asymptotic analysis of these coefficients in the limit as the cell 
optical thickness approaches zero. At this point the asymptotic analysis will be carried out in 
terms of the variable yε , where yε  refers to the cell optical thickness in Y direction. 
 

3.2 Asymptotic Analysis of Flux Multipliers 
 
This section is devoted to presenting the asymptotic analysis for the three flux multipliers. 
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3.2.1 First flux multiplier 
 
The first flux multipliers are defined as the flux multipliers in region (I) of a computational cell. 
Again we define region (I) of a computational cell as that part of the cell for which all 
characteristic curves drawn parallel to the direction of radiation incidence, and starting from the 
face where radiation exits the cell, intersect only one face of the cell.  In other words, the 
outgoing flux of this region results from the incoming flux on only one face of the cell. The first 
flux multipliers can generally be written as ( ) ( )ζε ,12 ,liTiA +  where A  depends on the moments 
of the incoming and outgoing fluxes, ε  is the cell optical thickness in either X or Y direction, 
and ζ  is the cell aspect ratio.  The function ( )ζε ,,liT  is defined by, 
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Integrating the above equation by parts yields, 
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which explodes as 0→ε , even though Eq. (16) does not explode in this limit. An alternative 
formula to Eq. (22) is needed that does not involve the reciprocal of ε  and allows us to compute 

( )ζε ,,liT  as 0→ε  with good precision. Using recursive formulas for Legendre polynomials, the 
following alternative to Eq. (22) is obtained, 
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Eq. (23) does not involve the reciprocal of ε  and thus will provide a good limit for thin cells. In 
order for the above recursive formula to work, another formula for ( )ζε ,,0 lT  is needed. To do so, 
we use Eq. (16) with 0=i , which upon integration by parts yields, 
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Clearly, Eq. (24) suffers the same problem as Eq. (22), namely, the ε1  term.  Hence we use Eq. 
(24) to compute ( )ζε ,,0 lT  only if γε ≥ , where γ  is a small number say 410−=γ . For γε < , we 
use a series expansion of lT ,0  as follows, 
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When substituting Eq. (25) into Eq. (24) and equating the coefficients of lε  on both sides we 
obtain the following relations 
 

0, =lkα ,     lk < ,     (26) 
 

( )12
1,1

, +
−= −−

l
ll

ll

α
α ,      (27) 

 

( )12
1,11,1

, +
−

= −−+−

l
lklk

lk

αα
α ,   lk ≥ .   (28) 

 
To compute all the lk ,α  using Eq. (27), we loop along the direction of the diagonal lk = , 
starting from k=0,1,2,…  In each case we must have a value for 0,kα , which was computed to be, 
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To summarize: 
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where the coefficients lk ,α  are given by Eq.(26) through Eq. (29) then, 
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3.2.2 Second flux multipliers 
 
The second flux multipliers are defined as the flux multipliers in region (II) of a computational 
cell. Region (II) of a computational cell is defined as that region of the cell that extends between 
two opposite faces where the flux enters from one face and exits at the other.  The second flux 
multipliers can generally be expressed in terms of the function ( )ζε ,,liN .  This function is 
defined as, 
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We use essentially the same procedure as for liT , . Here we show the final results, 
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with the following initialization equations, 
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, 1≥l ,    (32-B) 

 

( ) ( ) ( ) ( ) ( )[ ] ( )ζν
ζ

ζνζνζν llll ll
l ,01,01,0,1

21
12

1 −++
+

= −+ , 1≥l ,   (32-C) 

 

( ) ( ) ( ) ( ) ( ) ( )







−−









−−= −−− ζνζν
ζ

ζνζν 0,20,11,10, 12121
iiii ii

i
, 2≥i ,   (32-D) 

 
Even though the function liN ,  is not singular near 0=ε , we expand it in power series of ε  for 
later use in the asymptotic analysis of the source multipliers.  From Eq. (31) we immediately 
obtain, 
 

( ) ( ) ( )∑
∞

=

−=
0

,, !
2,

l

l
l

lili l
N εζνζε .    (33) 

 
3.2.3 Third flux multipliers 
 
The third flux multipliers are defined as the flux multipliers in region (III) of a computational 
cell. The third flux multipliers can generally be expressed in terms of the function ( )ζε ,,liM .  
This function is defined as, 
 

( ) [ ]( ) ( ) ( )∫
−

−

+−+−≡
12

1

1
, 11

2
1,

ζ
εζζε dcecPcPM c

lili .  (34) 

 
The function ( )ζε ,,liM  is related to the function ( )ζε ,,liT  by the relation, 
 

( ) ( ) ( )
ζ

ζζε
ζε

,1
, ,

,
il

li

li
T

M
+−

= .     (35) 
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As the cell optical thickness ε  approaches zero, the function ( )ζε ,,liM  will follow the function 
( )ζε ,,liT  in this limit according to Eq. (35), hence no special treatment is needed for it. However, 

it is appropriate to perform a separate asymptotic analysis of the function ( )ζε ,,liM  as the cell 
optical thickness approaches zero.  We will state here the final results of that analysis, a detailed 
analysis can be found in [4]. The function ( )ζ,,0 zM l  is expanded in the following power series 
of z, where z represents the cell optical thickness, 
 

∑
∞

=

=
0

,,0 ),(
k

k
kll zzM βζ , γ≤z ,     (36-A) 

 
where the coefficients kl ,β  are given by, 
 

)12(2
)(

)(0, +
Π

−=
l
l

l
ζζβ , 1≥l ,      (36-B) 

 
( )









−Π−−−

+
= −−−+ )12(

!2
2

)12(
1)( 1,11,1, ζζββζβ l

k

klklkl kl
, 1,1 ≥≥ lk ,  (36-C) 

 
( )

1,0 )!1(
2)( ++

−= k

k

k k ζ
ζβ , 0≥k ,     (36-D) 

 
where )()()( 11 xPxPx lll +− −≡Π , 1≥l . 
 

3.3 Asymptotic Analysis of Source Multipliers 
 
The source multipliers are defined as the quantities that multiply the source moments in the final 
discrete-variable equations of the AHOT-C method, namely, the quantities ( )( ) ijJji 1212 ++ in 
Eq. (12) of Section 2. As we mentioned earlier, in the limit where the cell optical thickness in X 
and/or Y direction approaches zero, the source multipliers suffer from mathematical imprecision 
and the overall solution deteriorates. Over the next two sub sections we introduce a new 
approach for computing the source multipliers and provide asymptotic formulas that are working 
for both the thick and thin cell cases without loss of accuracy. We will derive the asymptotic 
formulas for the source multipliers for the case 0, >ηµ  and 1<ζ . For the rest of cases of 
radiation incidence and cell orientation, similar formulas were derived [4] but will not be shown 
here. 
 
3.3.1 Asymptotic analysis of the first source multipliers 
 
The first source multipliers are those coefficients that multiply the source moments in the final 
discrete-variable equations in region (I) of a computational cell. To distinguish these multipliers 
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from those in regions (II) and (III), we will refer to the former by the letter kjiS ,,  whereas we will 
use the letter kjiR ,,  to refer to the latter.  In this section we present a new approach for calculating 
the first source multipliers and derive asymptotic formulas that can be used in the thick and thin 
cell cases as well. The source multipliers are generally defined in terms of the following integral 
(Eq. (12), Section 2), 
 

( ) ( ) [ ]( ) [ ]( )∫ ′+′+′≡ −′ byPaxPedyxJ ojoiooji
T τµτµττ ττσ,,, ,  (12) 

 
where ( )oo yx ,  refers to any reference point on the characteristic curve that can be parameterized 

by: 
ηµ

ττ oo yyxx −=−=−′ . In these equations, ( )yx,  refers to any point on the characteristic 

curve and ( )ηµ, are the direction cosines of the radiation direction of transfer.  Using these 
equations, the integral jiJ ,  can be written in terms of any combination of three variables from 

,,,, oxyxτ ′  and oy .  In other words, we can carry out our derivation in any set of independent 
variables and manipulate the resulting final expression to obtain the desired dependence.  Hence 
in what follows, we will not explicitly write the arguments of jiJ ,  but it should be understood 
that only one set of independent variables is used to carry out the derivation. Before proceeding 
with the derivation of the asymptotic formulas for the source multipliers, we shall set some 
notations that will be used frequently. We will use the symbols ( )xiΧ and ( )yjΥ  to refer to 
Legendre Polynomials of orders i  and j , defined on the intervals ( )aa +− ,  and ( )bb +− ,  
respectively. That is, 
 

( ) ( )axPx ii ≡Χ ,     (37-A) 
 

( ) ( )byPy jj ≡Υ .     (37-B) 
 
 
Using the definitions (37-A) and (37-B), the jiJ ,  integrals can be rewritten as, 
 

( ) ( ) ( ) ( )∫ ′+Υ′+Χ′= −′
τ

ττσ τητµττ
0

, ,, ojoiooji yxedyxJ T .   (38) 

 
The starting point in the asymptotic analysis is to derive recursive formulas for the jiJ ,  integrals. 
To do so, we insert the following recursive formula for the normalized Legendre polynomials 
into Eq. (38), 
 

( ) ( ) ( ) ( ) ( )






 Χ−−Χ−=Χ −− ξξξξ 21 1121

iii i
a

i
i

.   (39) 

 



M. A. Elsawi, N. M. Abdurrahman, and Y. Y. Azmy 
 

American Nuclear Society Topical Meeting in Mathematics & Computations, Gatlinburg, TN, 2003 14/23 
 

Upon using the definition of the integrals jiJ ,  into the resulting equation, we obtain the desired 
recursive formula, 
 

( ) ( ) ( )
( ) ( )[ ]









++
+

−+−−






 −−= −−+−−− 1,11,1,2,1, 1
12

121121
jijijiji

oo
ji jJJj

j
iJiJ

b
y

a
xi

i
J

ζζ
. (40) 

 
Eq. (40) can also be written in terms of (x,y) rather than (xo,yo) as follows, 
 

( ) ( ) ( )
( ) ( )[ ]









++
+

−+−−






 −−= −−+−−− 1,11,1,2,1, 1
12

121121
jijijijiji jJJj

j
iJiJ

b
y

a
xi

i
J

ζζ
. (41) 

 
Eqs. (40) and (41) are equivalent in the sense that they are used to calculate jiJ ,  from the same 
lower order integrals.  The only difference is that Eq. (40) is used when the coordinates ( )oo yx ,  
are known whereas Eq. (41) is used when the coordinates ( )yx,  are known. Another set of 
equations equivalent to Eq. (40) and Eq. (41) can be obtained by changing the order in which we 
substitute Legendre recursive relations into Eq. (12).  The resulting equations are: 
 

( ) ( ) ( )
( ) ( )[ ]







 ++

+
−+−−






 −−= −−+−− 1,112,1,, 1

12
121121

jiijiji
oo

ji iJJi
i
jJjJ

a
x

b
yj

j
J ζζ , (42) 

 
and, 

( ) ( ) ( )
( ) ( )[ ]







 ++

+
−+−−






 −−= −−+−− 1,112,1,, 1

12
121121

jiijijiji iJJi
i
jJjJ

a
x

b
yj

j
J ζζ . (43) 

 
Equations (40) and (42) are mathematically equivalent for i and j > 0. Equation (41)[(43)] is used 
to compute jiJ ,  for [ ] 0=ij , respectively to avoid singularity.  In what follows, we will use Eqs. 
(40-43) to derive asymptotic formulas for the source multipliers that can be used in the thick and 
thin cell cases without loss of accuracy. We will start by calculating the first source multipliers in 
the case 0, >ηµ  and 1<ζ . 
 
For the case under investigation, radiation emerges from the cell at by = , and enters the cell at 

axo −=  (see Fig. 3). 
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It follows from Eq. (12) that the first source multipliers are given by, 
 

( ) ( )∫
+

−

Χ





=

a

a
jikkji dxbxJx

a
S τ,,

2
1

,,, .     (44) 

 
Substituting Eq. (43) into Eq. (44) and manipulating the resulting equation, we obtain the 
recursive relation for kjiS ,, , 
 

( ) ( ) ( )
( ) ( )[ ]

( )
( ) ( )[ ]





++
+
−−

++
+
−+−−



 −=

−−+−

−−−+−−

1,1,1,1,

,1,1,1,1,2,,1,,,

1
12
12

1
12
121121

kjikji

kjikjikjikjikji

kSSk
k

j

iSSi
i
jSjSj

j
S

ζ

ζ

, 1,2,1 ≥≥≥ kji , 

 (45) 
 
The recursive formula derived above needs initialization, two levels deep in index j, and one 
level deep in each of i and k indices. Thus setting i=0 and k=0 in Eq. (45) yields, 
 

( ) ( ) ( ) ( )
( ) ( )[ ]







 ++

+
−−−+−−−= −−+−−−− 1,1,01,1,0,1,1,20,1,0,,0 1
12
12121121

kjkjkjkjkjkj kSSk
k

jSjSjSj
j

S ζζ  (46) 

 
and, 
 

( ) ( ) ( )
( ) ( )[ ] ( )







 −−++

+
−+−−−= −−−−+−− 1,1,0,1,10,1,10,2,0,1,0,, 121
12
121121

jijijijijiji SjiSSi
i
jSjSj

j
S ζζ  (47) 

 

Figure 3. Incoming and outgoing radiation from a 2-D cell for the case µ, η >0 and ξ <1



M. A. Elsawi, N. M. Abdurrahman, and Y. Y. Azmy 
 

American Nuclear Society Topical Meeting in Mathematics & Computations, Gatlinburg, TN, 2003 16/23 
 

Because the R.H.S. of Eqs. (46) and (47) involve only values at j-1 and j-2 levels, all S quantities 
are considered known, including those evaluated at i+1 and k+1 levels.  Next, evaluating Eq. 
(45) at j=1 yields, 
 

( ) ( )[ ] ( ) ( )[ ]1,0,1,0,,0,1,0,1,0,,1, 1
12

1
12 −+−+ ++

+
−++

+
+= kikikikikiki kSSk

k
iSSi

i
SS ζζ . (48) 

 
Now all that remains to make the recursive formulas, i.e., Eqs. (45)-(48), fully functional is to 
provide an expression for kiS ,0, .  Clearly, Eq. (45) is singular at this value of j, so we start with 
the integral definition of kiS ,0, , i.e., Eq. (44), which upon using the change of variables yields the 
following recursive relation for kiS ,0, , 
 

kiki
x

kiki

T
ki SSi

k
S ,0,2,0,1

,2,
,0,

12
12

1
−−

− +






 −−







+

−
=

ε
δδ

σ
,   0,2 ≥≥ ki ,  (49) 

 
with the initialization formulas, 
 

( ) k
x

xk
TT

k
k STS ,0,0,0

,1
,0,1

11
3 ε

ε
σσ

δ
−+= ,  0≥k ,   (50) 

 
and, 
 

( )xk
TT

k
k TS ε

σσ
δ

,0
0,

,0,0
1−= ,  0≥k .    (51) 

 
Equations (49)-(51), which are used to evaluate kiS ,0,  to generate the initialization expressions 
for kjiS ,, , in general involve reciprocals of xε , and therefore must be analyzed in the limit 

0→xε . We start by assuming a series expansion of kiS ,0,  in the parameter xε  of the form, 
 

l

l
l yki

T
ki sS ε

σ ∑
∞

=

=
0

,,,0,
1  ,  γζε <y ,    (52) 

 
where γ  is a user defined cutoff value.  In the series expansion given by Eq. (52), we used the 
relation yx ζεε =  and the cell aspect ratio ζ  was absorbed in the expansion coefficients lkis ,, . In 
making this substitution, we assume that the cell aspect ratio is “close” to unity, that is, the cells 
are not stretched too much in one direction with respect to the other.  To calculate the coefficients 
of expansion in (52), we insert Eq. (52) into Eq. (49) and equate the coefficients of the same 
power of yε on both sides, making sure to set the coefficient of yε1 to zero to avoid singularity 
as 0→yε , the following set of equations is obtained, 
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00,, =kis , 1,0 ≥≥ ik ,       (53-A) 
 









+

−








+
= −+

1212
,1,1

1,, ki
s kiki

ki

δδζ , 0,1 ≥≥ ki ,     (53-B) 

 

[ ]1,,11,,1,, 12 −+−− −







+
= lkilkilki ss

i
s ζ , 2,0,1 ≥≥≥ lki ,    (53-C) 

 







≥−

=−
=

1,

0,

,

0,,0
,,0 l

l
s

l
lk

kk
lk ζα

αδ
.     (53-D) 

 
Where lk ,α  are given by Eqs. (26)-(29).  Equations (45)-(53) completely define the calculational 
procedure for calculating the first source multipliers in the thick as well as the thin cell cases.  
 
3.3.2 Asymptotic analysis of the second source multipliers 
 
The second source multipliers are those coefficients that multiply the source moments in the final 
discrete-variable equations in regions (II) and (III) of a computational cell.  We will refer to 
those multipliers by kjiR ,, .  As we mentioned earlier, we will limit our analysis of the multipliers 
to the case 0, >ηµ  and 1<ζ . 
 
In this case, the outgoing flux is at ax =  (see Fig. 3), and the source multipliers in regions (II) 
and (III) are given by, 
 

( ) ( )dyyaJy
b

R ji

b

b
kkji τ,,

2
1

,,, ∫
+

−

Υ





= .    (54) 

 
The integrand in Eq. (54) is discontinuous across the characteristic line separating regions (II) 
and (III).  Substituting Eq. (41) for the definition of jiJ ,  into Eq. (54), we obtain the recursive 
formula for kjiR ,, , 
 

( ) ( ) ( )
( ) ( )[ ]

( )
( ) ( )[ ]



++

+
−−

++
+

−+


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−−+−−−
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1
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1
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121121
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k

i
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iRiRi
i

R

ζ

ζ

, (55) 

 
with the following initialization formulas, 
 

( ) ( ) ( ) ( )
( ) ( )[ ]}1,0,11,0,1,1,1,0,2,0,1,0, 1

12
12121121

−−+−−−− ++
+
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

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k
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i
R ζ

ζ
, (56) 
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( ) ( ) ( )
( ) ( )[ ] ( ) }1,,10,1,10,1,10,,20,,10,,
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jijijijijiji RijRRj

j
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i
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





 −−++
+
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

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and, 
 

( ) ( )[ ] ( ) ( )[ ]1,,01,,0,1,0,1,0,,0,,1 1
12

11
12

1
−+−+ ++

+
−++

+
+= kjkjkjkjkjkj kRRk

k
jRRj

j
RR ζ

ζ
. (58) 

 
The initialization in the index i needs special treatment because Eq. (55) is singular at i=0. We 
use Eq. (54) with i=0 to obtain, after some algebraic manipulations, the following recursive 
relation for kjR ,,0 , 
 

( ) ( )[ ]

kjkj
y
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


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


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=

ε

ζεζε
σ
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, 2,0 ≥≥ jk . (59) 

 
The initialization formulas for Eq. (59) are obtained by setting j=1 and j=0, respectively, to 
obtain the following equations, 
 

( ) ( ) k
y

yk
T

xk
TT

k
k RMNR ,0,0,0,1

,1
,1,0

11,11,1
3 ε

ζε
σ

ζε
σσ

δ
−+−= , 0≥k ,  (60) 

 

( ) ( )[ ]ζεζεδ
σ

1,1,1
,0,00,,0,0 xkykk

T
k NMR −−= ,  0≥k .    (61) 

 
Equation (60) involves the reciprocal of the cell optical thickness in the Y direction, which 
necessitates performing asymptotic analysis for the coefficients kjR ,,0  in the limit as 0→yε .  
We begin by assuming a series expansion of the coefficients kjR ,,0 in powers of yε  of the form, 
 

∑
∞

=

=
0

,,,,0
1

l

l
l ykj

T
kj rR ε

σ
,  εε ≤y .     (62) 

 
Substituting the series expansion (62) into Eq. (60) and equating the coefficients of powers 
of yε on both sides, making sure to eliminate the singularity as 0→yε , yields the following 
equations, 
 

00,, =kjr ,  1≥j ,      (63-A) 
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Where lk ,β  are given by Eqs. (36-B)-(36-D).  The calculational procedure for calculating the 
second source multipliers is similar to the one used for calculating the first source multipliers in 
the case 1<ζ . 
 

4. COMPARISON OF THE EXACT AND ASYMPTOTIC FORMULAS  
 
In this section, we compare the exact and asymptotic formulas for the source multipliers we 
derived earlier in Section 3.  We will present the results of our analysis of only those components 
we identify as the origins of the instabilities in the exact expressions. In producing these results, 
we have used a symbolic manipulator system that generated the formulas of both the exact and 
the asymptotic analyses from their analytic representations. 
 
We will start by showing the effect of the asymptotic analysis on the exact expressions of the 
functions lT ,0  and lM ,0 .  The reason for presenting such results is that these functions are 
primarily used in evaluating the source multipliers in the original formulation of the AHOT-C 
method. Fig. 4 shows the exact and asymptotic expressions of the function )(,0 εlT , where ε is the 
cell optical thickness in either X or Y direction. 
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(d) 

Figure 4. Exact and asymptotic expressions of the function T0,l of different orders versus the 
cell optical thickness 

We next investigate the function lM ,0  by plotting its exact and asymptotic expressions in Fig. 5 
for multiple values of ξ. 
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Figure 5. Exact and asymptotic expressions of the function M0,l of different orders versus 
the cell optical thickness 

Now we turn our attention to the effect of the asymptotic analysis on the source multipliers. In 
this presentation, we identify the components of the source multipliers responsible for the 
instabilities in the spatial weights, and then plot these components using the full and the 
asymptotic expressions. For example, for the case ξ >1, the weights S0,j,k  and Ri,0,k  will be 
investigated. For the case ξ <1, on the other hand, the weights Si,0,k  and R0,j,k  will be 
investigated. 
 
In these plots we address the elimination of the oscillation as 0→ε  and the agreement between 
the exact and asymptotic expressions far from the region where the oscillation occur in the exact 
expressions. 
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Figure 6. Plot of the exact (solid line) and asymptotic (dashed line) expressions of the coefficient 
S0,2,4 (a) and S0,3,3 (b). 
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Figure 7. Surface plots of the coefficient R1,0,2 versus the cell optical thickness εy and the cell 
aspect ratio ξ before (a) and after (b) performing the asymptotic analysis 

 
Fig. 6 and Fig. 7 show the importance and effectiveness of the asymptotic analysis of the spatial 
weights S0,j,k  and Ri,0,k  for the cases with ξ >1. Oscillations in the exact expressions due to finite 
precision have been eliminated by the asymptotic analysis which results in smooth behavior of 
the weights. 
Next we consider the asymptotic formulas for the cases where ξ <1. The coefficients of interest 
are Si,0,k and R0,j,k . Fig. 8 shows some selected coefficients before and after performing the 
asymptotic analysis on them. 
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Figure 8. Surface plots of the coefficients S3,0,3 before (a) and after (b) asymptotic analysis (for 
µ>0 and η<0), R0,2,1 before (c) and after (d) asymptotic analysis (for µ>0 and η<0), and S2,0,2 

before (e) and after (f) asymptotic analysis (for µ<0 and η<0). 
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5. CONCLUSIONS 
 
We performed thin cell limit (asymptotic) analysis on the spatial weights of the Arbitrarily High 
Order Transport method of the Characteristic type (AHOT-C). We identified the components of 
the spatial weights responsible for the instabilities of the method, and then we expanded those 
components in truncated power series of the cell optical thickness. The derived formulas have 
worked fine for most of the cases that involved very thin cells and high orders. 
 
In addition to performing thin cell analysis on the spatial weights, we have also derived new 
formulas for calculating the weights on thick cells. The new formulas performed as well as the 
old non-recursive formulas with the advantage of allowing performing thin cell analysis. Our 
new treatment of the spatial weights has been implemented in a research computer code 
developed at Oak Ridge National Laboratory to test the AHOT-C concept. Our implementation 
of the new analytic expressions of the weights has been successful so far and the code can run 
most of the cases that it could not run before. 
 
As part of this research effort we have investigate the accuracy of the derived coefficients by 
running some difficult benchmark problems and comparing their results to those obtained with 
the AHOT-C code that uses the new asymptotic formulas. The benchmark results will be 
published in the near future. 
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