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ABSTRACT 
 

In Monte Carlo (MC) criticality calculations, source error propagation through the stationary 
cycles and source convergence in the settling (inactive) cycles are both dominated by the 
dominance ratio (DR) of fission kernels, i.e., the ratio of the second largest to largest eigenvalues. 
For symmetric two fissile component systems with DR close to unity, the extinction of fission 
source sites can occur in one of the components even when the initial source is symmetric and the 
number of histories per cycle is larger than one thousand. When such a system is made slightly 
asymmetric, the neutron effective multiplication factor (keff) at the inactive cycles does not reflect 
the convergence to stationary source distribution. To overcome this problem, relative entropy 
(Kullback Leibler distance) is applied to a slightly asymmetric two fissile component problem 
with a dominance ratio of 0.9925. Numerical results show that relative entropy is effective as a 
posterior diagnostic tool.  
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1. INTRODUCTION 
 
It has been argued in the MC criticality analysis community that source error propagation 
through stationary iteration cycles is governed by the DR of fission kernels. [1] Researchers in 
favor of the argument have also claimed for decades that when DR is about unity, the cycle to 
cycle correlation (autocorrelation) of MC source distribution is strong. Figure 1 shows the 
trajectories of the first order autoregressive process with an autocorrelation coefficient of 0.999 
driven by independent standard normal noises.  One can easily observe that the trajectories do 
not appear to be in equilibrium and the crossing of the true mean of zero often does not occur 
over a thousand cycles even though the process is stationary. A similarly unstable phenomenon 
of MC source has been actively investigated for loosely coupled fissile component systems 
[2,3,4]. Recent work about DR and autocorrelation in MC criticality calculations has shown that 
when DR is nearly unity, the autocorrelation of the tallies of keff is not strong and may be 
negligible while the autocorrelation of MC source distribution is strong. [5] Therefore, in terms 
of computing keff alone, the difficulty in MC criticality calculations associated with large values 
of DR is when to start the tallying of keff, i.e., how to diagnose the convergence of source 
distribution. To meet this challenge, relative entropy [6] is defined so as to be utilized as a 
posterior diagnostic tool and is applied to a slightly asymmetric two fissile component problem 
with a dominance ratio of 0.9925. 
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Figure 1: Trajectory of a(n+1)=0.999*a(n)+b(n) for three independent initial random number 
seeds w here a(0)=0, b(n)’s are independent and b(n) ∼Ν (0,1) (standard normal)
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2. THEORETICAL BACKGROUND 
 
Let  ( )F r r′ →  be the expected number of the first generation descendant particles per unit 
volume at r resulting from a particle born at r′ . In the case of a position independent energy 
spectrum, ( )F r r′ →  is the fission kernel defined by the product of energy and angular 
spectrums, an inverse transport operator and a fission operator, with the last operator defined as 

( , ) ( , , )f r E r E d dEν ψΣ Ω Ω∫ ∫ for the operand ψ and the fissile descendent generation cross 

section fνΣ . The eigenfunctions and eigenvalues of F are denoted by Sj and kj:  
 

 1( ) ( ) ( )j j
j

S r S r F r r dr
k

′ ′ ′= →∫  (1) 

 
where kj are ordered as 0 1 2| | | |k k k> > > . As in previous work [1], the eigenvalue kj’s are 
assumed to be discrete. Note that keff is the largest eigenvalue k0 and S0 is called the fundamental 
mode eigenfunction and assumed to be normalized to k0: 
 
 0 0( )S r dr k=∫ . (2) 
 
The normalization condition (2) cannot generally be assumed for Sj, 1j ≥  because in symmetric 
problems eigenfunctions may integrate to zero for some of the non-fundamental modes. In order 

Figure 1: Trajectory of a(n)=0.999*a(n−1)+b(n) for three independent initial random number 
seeds where a(0)=0, b(n)’s are independent and b(n)∼N(0,1) (standard normal) 
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to simplify later derivations, the following normalization scheme is imposed on the 
nonfundamental mode eigenfunctions: 
  

 
( )

( ) when ( ) 0
( )

j j
j j

j

k S r
S r S r dr

S r dr
← ≠∫∫

, (3) 

 
i.e., the whole domain integral of ( )jS r is normalized to the corresponding eigenvalue as far as 

( ) 0jS r dr ≠∫  and no specification is made otherwise. The source (distribution of fission sites) 
after simulating the m-th stationary cycle in a MC criticality calculation is written as 
 
 ( ) ( )ˆ ˆ( ) ( ) ( ), 0m mS r NS r Ne r m= + ≥  (4) 
 
where ( )ˆ ( )me r  is the fluctuating component of the stationary source, N the number of particle 
histories per cycle, the hats indicate a realization of stochastic quantities, and ( )S r is the 
expected value (ensemble average) of ( )ˆ ( ) /mS r N :  
 

 ( )1 ˆ( ) ( ) .mS r E S r
N

 =    (5) 

 
Note that Eq. (5) implies ( )ˆ[ ( )] 0mE e r = . The scaling by N and N  in (4) is based on the random 
nature of individual particle tracking processes. In other words, the relative fluctuation of particle 
population ( ) ( ) ( )ˆ ˆ ˆ( ) [ ( )] [ ( )]m m mS r E S r dr E S r dr − ∫ ∫  can be scaled by the inverse of the square 

root of population when the population is sufficiently large. In addition, the number of particle 
histories is assumed to be fixed throughout cycles. The bias of ( )S r is of order 1/N for discretized 
[7] and continuous [8] models: 
 
 0( ) ( ) O(1/ )S r S r N− = . (6) 
 
The expected value (ensemble average) of the normalized source conditional on ( 1)ˆ ( )mS r−  is 
written as 
  

( 1)

( 1)

ˆ ( )
ˆ ( )

m

m

NS r
S r dr

−

− ′ ′∫
. 

 
Then, the random noise component ( )ˆ ( )m rε  resulting from the starter selection and subsequent 
particle tracking can be introduced as 
 

 
( 1)

( ) ( )
( 1)

ˆ( ) ( )ˆˆ ( ) ( ) ˆ ( )

m
m m

m

N F r r S r dr
N r S r

S r dr
ε

−

−

′ ′ ′→
≡ −

′′ ′′
∫

∫
. (7) 
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Recent work [5] has shown that Eqs. (4) and (7) yield 
 
 ( ) ( )ˆ ˆ[ ] 0,p qE p qε ε = > , (8) 
 
and  
 
 ( ) ( 1) ( ) 1/ 2ˆˆ ˆ( ) ( ) ( ) ( ) ( )m m me r A r r e r dr r O Nε− −′ ′ ′= → + +∫ , (9) 
 
where A is defined as 
 

 2

1 1( ) ( ) ( ) ( )A r r F r r F q r S q dq
k k

′ ′→ ≡ → − →∫  (10) 

 
with 
 
 ( )S r dr k=∫ . (11) 
 
Eqs. (1), (2), (6) and (11) enable one to rewrite Eq. (9) as 
 
 ( ) ( 1) ( ) 1/ 2

0 ˆˆ ˆ( ) ( ) ( ) ( ) ( )m m me r A r r e r dr r O Nε− −′ ′ ′= → + +∫  (12) 
 
where A0 is defined as 
 

 [ ]0 0
0

1( ) ( ) ( )A r r F r r S r
k

′ ′→ ≡ → − . (13) 

 
Eqs. (8) and (12) are the functional version of the first order autoregressive process when N is 
sufficiently large. Introducing the operator notation of A0 as  
 
 ( ) ( 1) ( ) 1/ 2

0 ˆˆ ˆ( ) ( ) ( ) ( )m m me r A e r r O Nε− −= + + , 
  
Def. (13) and Eqs. (1)-(3) yield 
 
 0 0 ( ) 0,A S r =  (14) 
 
and 
 

 
0

0
0

0

( ) ( ) when ( ) 0
( ) , 1, 1.

( ) when ( ) 0

i
j

j j
i

j i
j

j j

k
S r S r S r dr

k
A S r i j

k
S r S r dr

k

 
  − ≠    = ≥ ≥

 
= 

 

∫

∫
 (15) 
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Eqs. (14) and (15) imply that the cycle to cycle error propagation is governed by the ratio of the 
non-fundamental to fundamental mode eigenvalues if the completeness assumption of Sj’s is 
valid. Therefore, when DR is close to unity and the ratio of the second to fundamental mode 
eigenvalues is much smaller than unity, the fluctuation of MC source may show the behavior 
observed in the trajectory of the first order autoregressive process a(n+1) = φa(n)+b(n) with 
φ ≈1.  
 
Previous work in statistics showed that the discretized version of Eq. (12) without the 1/ 2( )O N −  
term was equivalent to the vector autoregressive moving average process of order p and p-1 
(ARMA(p,p-1)). [9] Here, ARMA models are a generalization of autoregressive processes and 
ARMA(1,0) is the first order autoregressive process. Thus, the fluctuation of MC source could in 
principle be explained in the framework of ARMA processes. However, we do not delve into this 
aspect of model identification. In the next section, we examine whether or not the duration of no 
crossing of true mean (ensemble average) lasts over a thousand cycles for the MC source of a 
two fissile component problem with a DR larger than 0.999 as observed in the first order 
autoregressive process in Figure 1. 
 

3. ONE GROUP TWO FISSILE COMPONENT PROBLEMS 
 
This section shows numerical results of symmetric and slightly asymmetric two fissile 
component problems having DR larger than 0.99. The problem specification is as follows: 
 

Problem 1 
 

• 5 region slab, with void boundary conditions on both sides and one-group isotropic cross 
sections, 

• the regions are (left to right) 1.0, 1.0, 5.0, 1.0, and 1.0 cm thickness, 
• the materials are (left to right) 2 (fuel), 1 (scatterer), 3 (absorber), 1, and 2, 
• material 1 (scatterer) 

1 1 11.0 , 0.8 , 0.2total scattering capturecm cm cm− − −Σ = Σ = Σ = , 
• material 2 (fuel) 

1 1 1 11.0 , 0.8 , 0.1 , 0.1 , 3.0total scattering capture fissioncm cm cm cm ν− − − −Σ = Σ = Σ = Σ = = , 
• material 3 (absorber) 

1 1 11.0 , 0.1 , 0.9total scattering capturecm cm cm− − −Σ = Σ = Σ = . 
 

Problem 2 
 

• Same as problem 1 except 1.01 cm thickness for the rightmost slab. 
 
The eigenvalues of Problems 1 and 2 were computed by the Green’s function methods [10] and 
the ratio of the first five non-fundamental to fundamental mode eigenvalues are shown in Table I. 
The DR values therein were also obtained by analyzing the spectral radius of the outer iterations 
in a discontinuous finite element discrete ordinate computation [11], where the initial flux in 
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Problem 1 is a random guess in order to avoid the suppression by a symmetric initial flux guess.  
Figure 2 shows the cycle progression of the MC source at the right fuel in Problem 1 for 2000 
and 200000 histories per cycle computations. The extinction of fission source sites is observed in 
the 2000 histories per cycle computation even though the initial source is correct in the 
resolution associated with two fuel bins. The fluctuation of MC source significantly decreases in 
the 200000 histories per cycle computation. The duration of no crossing of the mean value of 0.5 
is often more than a thousands cycles in both the computations. This may be troublesome 
because active cycles for MC tallying would have to be at least 10000 cycles for problems with 
DR larger than 0.999. If a middle plane reflective boundary condition is employed, the DR of 
Problem 1 is reduced to 0.305 and the difficulty in the computation disappears. Moreover, it has 
been proved for symmetric two fissile components systems that the MC source fluctuation does 
not affect keff tallies in the first order approximation. [2] Therefore, real difficulty exists in 
slightly asymmetric problems even though the DR may become smaller than that of the 
symmetric counterpart.    
 
 

Table I. Ratio of non-fundamental to fundamental mode eigenvalues 
 

 Problem 1 Problem 2 
First (DR) 0.99957 0.99250 
Second 0.30465 0.30563 
Third 0.30464 0.30243 
Fourth 0.16774 0.16827 
Fifth 0.16774 0.16652 

 

Figure 2: N orm alized  source at right fuel in  P rob lem  1
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 Figure 2: Normalized source at right fuel in Problem 1 
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Figure 3 shows the cycle progression of keff and MC source at right fuel in Problem 2 divided by 
their respective true mean. Here, the fundamental mode eigenvalue 0.427425 computed by the 
Green’s function method is used as the true stationary mean of keff, and the average of MC 
source over 16 replicas of 1250 inactive and 1250 active cycles with 10000 histories per cycle, 
0.9744±0.0013 (right + left =1), is used as the true mean of the MC source at the right fuel. One 
can observe that the duration of no crossing of the true mean value often becomes more than 
eighty cycles for the MC source; 379-463, 482-571, 726-815 and 905-1000 cycles. However, a 
more striking phenomenon is that keff does not reflect the source convergence process at all. 
Figure 4 shows the MC confidence interval coverage rate of the fundamental mode eigenvalue of 
Problem 2 computed by the Green’s function method [10]. Figure 5 shows the ensemble average 
of one σ (68%) confidence intervals of keff where the end points of the confidence intervals are 
averaged over 2000 replicas and thus the interval lengths are not multiplied by the factor 
1/ 2000 . The comparison of Figures 3 with 4 and 5 clearly indicates the necessity of the 
diagnostic method of the convergence of MC source distribution. On the other hand, (2), (3), and 
(15) yield 
 

 0
0 00

1 when ( ) 0
( ) , 1, 1.

0 when ( ) 0

i
j j

ji
j

j

k k
k S r dr

k kA S r dr i j

S r dr

    
 − ≠   = ≥ ≥   
 =

∫∫
∫

 (16) 

 
Due to the factor kj/k0−1, the effect of DR does not strongly appear in the autocorrelation of keff’s 
when DR is close to unity. [5] Therefore, in terms of computing keff alone, effective MC source 
convergence diagnostics would indeed improve confidence interval estimation for problems with  
DR close to unity. 
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 Figure 3: Source at right fuel and keff divided by their respective true mean in Problem 2 
(5000 histories per cycle; uniform initial source)
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Figure 4: One σ (68%) confidence interval coverage rate of the fundamental 
mode eigenvalue computed by Green's function method over 2000 replicas 
of 200 active cycle simulations with 5000 histories per cycle (Problem 2) 
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 Figure 4: One σ (68%) confidence interval coverage rate of the fundamental mode 
eigenvalue computed by Green's function method over 2000 replicas of 200 active 
cycle simulations with 5000 histories per cycle (Problem 2) 

Figure 5: Ensemble average of one σ (68%) confidence intervals of keff  
over 2000 replicas of 200 active cycle simulations with 5000 histories 
per cycle (Problem 2) 
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4. POSTERIOR SOURCE CONVERGENCE DIAGNOSIS 
 
In this section, we define the relative entropy of MC source distribution so as to be utilized as the 
posterior diagnosis of source convergence. [5] The relative entropy (Kullback Leibler distance) 
of the normalized binned sources SB and TB is defined as [6] 
 

1

( )( || ) ( ) ln
( )

BB
B B B

B
i

S iD S T S i
T i=

 
=  

 
∑ , 

 
where B is the number of spatial bins and i the bin number. D(SB||TB) is a statistical distance 
between SB and TB in a sense that D(SB||TB) is nonnegative and becomes zero only when 

( ) ( )B BS i T i=  for all bins. In addition, D(SB||TB) satisfies the pair convexity [6] 
 

1 2 1 2 1 1 2 2( (1 ) || (1 ) ) ( || ) (1 ) ( || ), 0 1,B B B B B B B BD S S T T D S T D S Tλ λ λ λ λ λ λ+ − + − ≤ + − ≤ ≤  
 
where 1 ,BS  2 ,BS  1

BT  and 2
BT  are all binned sources normalized to unity. Then, the SB convexity 

follows by setting 1 2
B B BT T T= = : 

 
1 2 1 2( (1 ) || ) ( || ) (1 ) ( || ), 0 1,B B B B B B BD S S T D S T D S Tλ λ λ λ λ+ − ≤ + − ≤ ≤  

 
i.e., D(SB||TB) is convex when viewed as a function of SB. The formal meaning of D(SB||TB) in 
information theory is the penalty of the data compression limit (minimum of expected prefix-free 
codeword length) of the random bins generated from SB under the false assumption that the 
distribution generating the bins is TB [6] The data compression limit of the random bins 
generated from SB under the presence of the knowledge of SB is nearly equal to Shannon entropy 
of SB, i.e., the randomness of the distribution SB. [6] They are formerly stated as 
 

 

( )

( )

Shannon entropy of

Data compression limit of the random bins generated from 
under the presence of the knowledge of 

Shannon entropy of 1

B

B

B

B

S

S
S

S

 
≤   

 

≤ +

 

 

 

( )

( )

Shannon entropy of ( || )

Data compression limit of the random bins generated from under
the false assumption that the distribution generating the bins is 

Shannon entropy of ( || ) 1

B B B

B

B

B B B

S D S T

S
T

S D S T

+

 
≤   

 

≤ + +

 

 
These inequalities involve the concept of the penalty resulting from the hypothesis that TB is 
stationary MC source distribution under the condition that one has observed SB. On the other 
hand, the SB convexity is a desired characteristic for measuring the distance to a fixed reference 
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distribution. Therefore, D(SB||TB) can be interpreted as a measure of the inefficiency of assuming 
that the true distribution in a MC simulation is TB when the observed distribution is SB. One can 
then utilize the relative entropy in the following manner. After all cycles are simulated:  
 

1) Compute TB(i) by averaging MC source over the second half of active cycles.  
2) Plot D(SB||TB) for each source SB through all cycles starting at the initial cycle. 
3) Check whether D(SB||TB) crosses the average of D(SB||TB) over the second half of the 

active cycles before the first active cycle. 
 
Figure 6 shows the posterior computation of relative entropy in Problem 2 following 1)-3) for the 
200 inactive and 200 active cycle simulations with 20000 histories per cycle. One can easily 
observe that the crossing of the mean of relative entropy over the second half of active cycles 
does not occur before the first active cycle. Figure 7 shows the same posterior computation of 
relative entropy in Problem 2 for the 500 inactive and 1000 active cycle simulations with 5000 
histories per cycle. A remarkable characteristic in Figure 7 is convergence performance 
difference for the different seeds. MC source convergence is observed to occur on average after 
about 350 cycles. Table II shows the cycle at the first crossing of the mean of relative entropy 
over the second half of active cycles for the simulations in Figure 7. The results in Table II are 
consistent with the trend in Figures 4 and 5. 
 
 

Figure 6: Posterior computation of relative entropy for 200 inactive 
and 200 active cycle simulations w ith 20000 histories per cycle in 
Problem 2 (dotted lines are the mean level over 301-400 cycles)
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Figure 6: Posterior computation of relative entropy for 200 inactive and  
200 active cycle simulations with 20000 histories per cycle in Problem 2 
(dotted lines are the mean level over 301-400 cycles) 
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Figure 7: Posterior computation of relative entropy for 500 inactive 
and 1000 active cycle simulations with 5000 histories per cycle in 
Problem 2
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Table II: Cycle at first crossing of the mean of relative entropy over the second half of 
active cycles for the simulations in Figure 7. 
 

Seed G H I J K K M 
Cycle at first crossing 364 283 235 386 235 505 540 

 
 

5. CONCLUSIONS 
 

We have discussed similarities between the first order autoregressive process and the MC source 
in two fissile component problems with DR close to unity both numerically and mathematically. 
The possibility of modeling stationary MC source as ARMA(p,p-1) processes was pointed out 
based on mathematical expressions derived and previous work on vector ARMA processes [9]. 
We have successfully applied the relative entropy of MC source distribution to the convergence 
diagnosis of a slightly asymmetric two fissile component problem with DR close unity. The 
diagnostic proposed can be implemented for any number of space bins. Moreover, it is the direct 
evaluation of the penalty associated with the stationarity hypothesis of MC source distribution 
and does not need the additional knowledge, parameter estimation, or parametric assumption of a 
problem simulated, which is often required in convergence diagnostic methods available in 
operations research and statistics [12,13]. The only restriction in the usage of relative entropy is a 
posterior diagnostic nature. 

Figure 7: Posterior computation of relative entropy for 500 inactive and 
1000 active cycle simulations with 5000 histories per cycle in Problem 2 
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