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ABSTRACT

The Variational Variance Reduction (VVR) method has been shown to be an effective technique for
increasing the efficiency of Monte Carlo simulations. This method uses a variational functional, which
employs first-order estimates of the forward and adjoint fluxes, to yield a second-order estimate of a
desired system characteristic – which, in this paper, we take to be the criticality eigenvalue k. If Monte
Carlo estimates of the forward and adjoint fluxes are used, each having global “first-order” errors of
O(1/

√
N), where N is the number of histories used in the Monte Carlo simulation, then the statistical

error in the VVR estimation of k will in principle be O(1/N). In this paper, we develop this theoretical
possibility and demonstrate with numerical examples that implementations of the VVR method for
criticality problems can approximateO(1/N) convergence for sufficiently large values of N .
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1. INTRODUCTION

The use of variational functionals is an effective method of increasing the efficiency of Monte Carlo
simulations [1–12]. In this technique a system characteristic, such as a detector response or an eigenvalue,
is estimated using a variational rather than a direct functional. Direct functionals, which are employed in
traditional Monte Carlo calculations, require estimates of the forward flux in the detector region only.
Variational functionals, which are theoretically more accurate than direct functionals, require estimates of
forward and adjoint fluxes over the entire phase space of the problem. Recently, variational functionals
have been employed as a variance reduction device by (i) calculating the adjoint flux estimate using a
relatively inexpensive deterministic method, (ii) representing the adjoint flux as a function in phase space,
(iii) estimating the forward solution using Monte Carlo, and (iv) evaluating the variational functional using
the deterministic adjoint and forward Monte Carlo flux information [3–11]. We have called this general
procedure Variational Variance Reduction (VVR). In this paper, we examine the use of Monte
Carlo-generated adjoint flux estimates in the VVR method, applied to 3-D, monoenergetic criticality
problems [7, 12].
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Variational functionals are more accurate than direct functionals because they combine first-order estimates
of the forward and adjoint fluxes to yield a second-order estimate of the desired system characteristic.
Direct functionals, used in standard Monte Carlo simulations, yield only a first-order estimate of the system
characteristic from a first-order estimate of the forward flux. If the error in the Monte Carlo-calculated
forward flux is O(1/

√
N), where N is the number histories in the Monte Carlo simulation, then the error

in standard Monte Carlo estimates of the system characteristic, obtained using a direct functional, is also
first-order, i.e. O(1/

√
N). This is a well-known, almost universal result: the statistical error in a Monte

Carlo simulation is inversely proportional to the square root of the computing effort. However, if a
variational functional is used with Monte Carlo estimates for both the forward and adjoint fluxes, each
having errors of O(1/

√
N), then – in the absence of additional errors – the error in the variational estimate

of the system characteristic will be second order, i.e. O(1/N). Unfortunately, there are additional
(truncation) errors, discussed below, which degrade this performance for large N to O(1/

√
N).

Nevertheless, the variational functional is significantly more accurate, i.e. has significantly smaller
statistical errors, than the standard functional.

The VVR method is more costly to implement per particle than traditional Monte Carlo, due to the extra
work required to estimate the adjoint flux and evaluate the variational functional. However, our numerical
results show that the accuracy of the variational functional outweighs this extra cost, yielding an overall
more efficient Monte Carlo simulation.

Allagi and Lewins [1], and Allagi, Lewins, and Parks [2] have also examined generating both the forward
and adjoint flux estimates via Monte Carlo. Although their results demonstrate the increase in efficiency
when using variational functionals, they made no attempt to examine the increase in the convergence rate
over other Monte Carlo methods. Also, their adjoint flux was estimated directly from the forward Monte
Carlo simulation. This can lead to a bias in the results of the variational estimate [1]. In the present paper,
we employ distinct Monte Carlo simulations to estimate the forward and adjoint fluxes.

We now outline the remainder of this paper. In Section 2 we outline the 3-D monoenergetic criticality
problems of interest. In Section 3 we describe the variational functional employed in the VVR method, and
the direct functional used in standard Monte Carlo calculations. In Section 4 we discuss the application of
the variational functional in the VVR method, including the representation of the adjoint flux and the
evaluation of the variational functional using forward and adjoint Monte Carlo simulations. In Section 5 we
describe the behavior of the variational functional when Monte Carlo is used to estimate both the forward
and adjoint fluxes. Here, we demonstrate theoretically that the error in the eigenvalue estimate converges as
O(1/N). In Section 6 we numerically compare (i) the VVR method using a Monte Carlo adjoint
simulation, (ii) the VVR method using a deterministic adjoint calculation, and (iii) standard Monte Carlo.
This comparison consists of examining the convergence rates of the above three methods for a class of
criticality problems. We conclude with a brief discussion in Section 7.

2. PROBLEM DESCRIPTION

We consider the following three-dimensional, monoenergetic criticality problem:

Lψ =
1

k
Fψ , r ∈ V , Ω ∈ 4π , (1)

where an estimate of the the eigenvalue k is desired. Here, ψ(r,Ω) is the eigenfunction or forward angular
flux, r is the spatial variable, and Ω is the angular variable. The spatial domain is represented by V . In Eq.
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(1), the transport operator L is defined as

Lψ = Ω · ∇ψ(r,Ω) + Σt(r)ψ(r,Ω) − Σs(r)

4π

∫

4π
ψ(r,Ω′)dΩ′ , (2)

and the fission operator F is defined by

Fψ =
νΣf(r)

4π

∫

4π
ψ(r,Ω′)dΩ′ . (3)

In Eq. (2), we have assumed isotropic scattering, but our work easily generalizes to include anisotropic
scattering. To complete the problem description, boundary conditions must assign the angular flux for
incoming directions on the outer boundary of the system. For criticality problems, we consider only
vacuum or reflective boundary conditions.

Corresponding to the above forward transport problem is the adjoint problem

L∗ψ∗ =
1

k
Fψ∗ , r ∈ V , Ω ∈ 4π , (4)

where ψ∗(r,Ω) is the adjoint eigenfunction or angular flux (or, the importance function [14]), and the
eigenvalue k is identical to the eigenvalue of Eq. (1). In Eq. (4), the adjoint transport operator L∗ is defined
as

L∗ψ∗ = −Ω · ∇ψ∗(r,Ω) + Σt(r)ψ
∗(r,Ω) − Σs(r)

4π

∫

4π
ψ∗(r,Ω′)dΩ′ , (5)

and, for the one-group problems considered in this paper, the fission operator F is self adjoint. Vacuum or
reflective boundary conditions apply to Eq. (4) for outgoing directions.

The forward and adjoint operators described above have the following properties [15]:

〈f, Lh〉 = 〈L∗f, h〉 , (6)

and
〈f, Fh〉 = 〈Ff, h〉 . (7)

Here f and h are arbitrary functions, and we have used the inner-product notation

〈f, h〉 =

∫

V

∫

4π
f(r,Ω)h(r,Ω)dΩd3r , (8)

to denote integration over the entire phase space of the problem. The application of Eq. (6) requires that h
and f respectively satisfy the boundary conditions of Eqs. (1) and (4) exactly. In this paper, we consider
forward fluxes calculated by Monte Carlo only, which exactly satisfy vacuum or reflective boundary
conditions.

3. DIRECT AND VARIATIONAL FUNCTIONALS

We now present two functionals that, given estimates of the forward flux Ψ and possibly the adjoint flux
Ψ∗, estimate the eigenvalue k. The first is the direct functional, employed by standard Monte Carlo
simulations:

G[Ψ] =
〈1, FΨ〉
〈1, LΨ〉 . (9)
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This functional can be obtained simply by integrating Eq. (1) over phase space. Thus, if G is evaluated
using the exact forward flux, then Eq. (9) will yield the exact eigenvalue. G has the standard interpretation
of being the ratio of the total neutron production rate to the total neutron loss rate [15]. Also, if Ψ = ψ+ δψ
is a “first-order” estimate of the exact forward flux, then G yields a first-order estimate of the eigenvalue,

G[ψ + δψ] = k +O(δψ) . (10)

When employing the direct functional G in a Monte Carlo simulation, the numerator 〈1, FΨ〉 is often
evaluated by using a track-length or collision estimator to calculate the total fission rate in a given fission
generation. The denominator 〈1, LΨ〉 is interpreted as the total loss rate. Since fission is treated as a
terminal process and the loss rate is simply the total number of particles in a given generation, division of
the fission rate by the loss rate is simply a normalization by the total number of histories simulated.

Corresponding to the above direct functional is the variational functional

H[Ψ,Ψ∗] =
〈Ψ∗, FΨ〉
〈Ψ∗, LΨ〉 , (11)

which requires estimates of the forward and adjoint fluxes throughout the entire phase space of the
problem. H can be derived by taking the inner product [defined by Eq. (8)] of Eq. (1) with Ψ∗. This
functional has the interpretation of being the importance-weighted fission rate divided by the
importance-weighted loss rate.

The variational functional H has several useful properties. First, we note that

H[ψ,Ψ∗] = k , (12)

and
H[Ψ, ψ∗] = k . (13)

Eq. (12) implies that the variational functional yields the exact eigenvalue, regardless of the adjoint
estimate, if the exact forward flux is used to evaluate the variational functional. Hence, in the limit of an
infinite number of histories, the VVR method will calculate k exactly. Eq. (13) implies that if the exact
adjoint flux is used, the variational functional yields the exact eigenvalue regardless of the forward flux
estimate (as long as Ψ satisfies the exact boundary conditions). Now the VVR method becomes a form of a
zero-variance method in which the Monte Carlo simulation is performed in an analog manner, but the
resulting forward information is combined with the adjoint solution in a nonanalog manner [13]. This
zero-variance VVR method differs from other zero-variance methods in the fact that it requires no
nonanalog biasing.

We now demonstrate that when first-order estimates of the forward and adjoint fluxes are introduced into
H , one obtains a second-order estimate of the eigenvalue. To do this, we assume Ψ = ψ + δψ and
Ψ∗ = ψ∗ + δψ∗ and write Eq. (11) as

H[ψ + δψ, ψ∗ + δψ∗] =
〈ψ∗ + δψ∗, F (ψ + δψ)〉
〈ψ∗ + δψ∗, L(ψ + δψ)〉

= k +
〈ψ∗ + δψ∗, F (ψ + δψ)〉
〈ψ∗ + δψ∗, L(ψ + δψ)〉 − 〈ψ∗, Fψ〉

〈ψ∗, Lψ〉

= k +
〈ψ∗ + δψ∗, F (ψ + δψ)〉〈ψ∗, Lψ〉 − 〈ψ∗, Fψ〉〈ψ∗ + δψ∗, L(ψ + δψ)〉

〈ψ∗ + δψ∗, L(ψ + δψ)〉〈ψ∗, Lψ〉 .

(14)
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The zero-th order terms on the right side of of Eq. (14) ( containing no error terms in the numerator) can be
written as

k +
〈ψ∗, Fψ〉〈ψ∗, Lψ〉 − 〈ψ∗, Fψ〉〈ψ∗, Lψ〉

〈ψ∗ + δψ∗, L(ψ + δψ)〉〈ψ∗, Lψ〉 = k . (15)

The second-order term of Eq. (14) (containing only the product δψδψ∗ in the numerator) is given by

〈δψ∗, F δψ〉〈ψ∗ , Lψ〉 − 〈ψ∗, Fψ〉〈δψ∗ , Lδψ〉
〈ψ∗ + δψ∗, L(ψ + δψ)〉〈ψ∗, Lψ〉 = O(δψδψ∗) , (16)

which cannot be simplified. Finally, the first-order term of Eq. (14) (containing only the error terms δψ and
δψ∗ separately in the numerator) is

[〈ψ∗, F δψ〉 + 〈δψ∗, Fψ〉]〈ψ∗, Lψ〉 − 〈ψ∗, Fψ〉[〈δψ∗ , Lψ〉 + 〈ψ∗, Lδψ〉]
〈ψ∗ + δψ∗, L(ψ + δψ)〉〈ψ∗, Lψ〉 , (17)

which can be simplified using Eq. (12) as

〈ψ∗, F δψ〉 + 〈δψ∗, Fψ〉 − k[〈δψ∗, Lψ〉 + 〈ψ∗, Lδψ〉]
〈ψ∗ + δψ∗, L(ψ + δψ)〉 . (18)

Using the definition of the exact forward flux, Eq. (1), the second and third terms in the numerator of Eq.
(18) cancel, leaving

〈ψ∗, F δψ〉 − k〈ψ∗, Lδψ〉
〈ψ∗ + δψ∗, L(ψ + δψ)〉 =

〈ψ∗, F δψ〉 − k〈ψ∗, Lδψ〉 + 〈ψ∗, Fψ〉 − k〈ψ∗, Lψ〉
〈ψ∗ + δψ∗, L(ψ + δψ)〉

=
〈ψ∗, FΨ〉 − k〈ψ∗, LΨ〉
〈ψ∗ + δψ∗, L(ψ + δψ)〉 =

〈F ∗ψ∗,Ψ〉 − k〈L∗ψ∗,Ψ〉
〈ψ∗ + δψ∗, L(ψ + δψ)〉 = 0 ,

(19)

where we have used Eqs. (4), (6), (7), and (12), and assumed the forward flux estimate satisfies the
boundary conditions. Then, using Eqs. (15), (16), and (19), Eq. (14) yields the result

H[ψ + δψ, ψ∗ + δψ∗] = k +O(δψδψ∗) , (20)

which states that first-order estimates in the forward and adjoint fluxes yield a second-order estimate in the
eigenvalue k. Thus, the variational functional H has the capacity to estimate k more accurately than the
direct functional G.

4. IMPLEMENTATION

We now describe the implementation of the variational functional into a variance reduction method for
criticality problems. To begin, we subdivide the problem domain V into a “tally” grid of I cells for the
purpose of collecting the forward Monte Carlo information. This tally grid is represented by cells V i, each
with a boundary ∂Vi and a unit outward normal vector ni. No constraints are placed on this tally grid, other
than that the material properties (cross-sections) are constant within each cell.

Next, we generate an estimate of the adjoint flux Ψ ∗ and use the resulting information to calculate
cell-averaged spherical harmonic moments in each tally cell 1 ≤ i ≤ I . These spherical harmonic
moments are defined by

φ∗nmi =
1

∆Vi

∫

Vi

∫

4π
Y ∗

nm(Ω)Ψ∗(r,Ω)dΩd3r , (21)
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for 0 ≤ n ≤ N and −n ≤ m ≤ n. In Eq. (21), ∆Vi is the volume of tally cell i, and N is the order of
angular representation desired. In our simulations, we estimate φ∗

nmi using a track length estimator. Then,
using these spherical harmonic moments, we represent Ψ∗ as the following histogram-in-space function in
each tally cell i:

Ψ∗(r,Ω) ≈
N

∑

n=0

n
∑

m=−n

φ∗nmiYnm(Ω) , r ∈ Vi , Ω ∈ 4π . (22)

This representation of the adjoint flux preserves the first N cell-average spherical harmonic moments. (In
this paper, we use N ≤ 3.) The resulting low-order angular representation is accurate in diffusive systems,
where the angular flux depends weakly on the angular variable. Thus, the resulting VVR method should
perform very well for problems involving large nuclear reactor cores dominated by scattering [7–12]. More
elaborate representations of the adjoint flux are possible, including representations that involve polynomial
expansions of the angular and spatial variables [7, 9–11]. For simplicity, we consider only a
piecewise-constant spatial representation of the adjoint flux estimate in this paper.

The above representation of the adjoint flux estimate can be introduced into H to obtain a reduced
functional, which requires knowledge of low-order angular moments of the forward flux in each tally cell
and on each tally cell boundary. To do this, we first write H as

H[Ψ,Ψ∗] =
〈Ψ∗, FΨ〉

〈Ψ∗, TΨ〉 + 〈Ψ∗, CΨ〉 − 〈Ψ∗, SΨ〉 , (23)

where the streaming operator T is defined by

Tψ = Ω · ∇ψ(r,Ω) , (24)

the collision operator C is defined by

Cψ = Σt(r)ψ(r,Ω) , (25)

and the scattering operator S is defined by

Sψ =
Σs(r)

4π

∫

4π
ψ(r,Ω′)dΩ′ . (26)

Introducing Eqs. (22) into (23), we may express the various terms in the reduced functional as:

〈Ψ∗, FΨ〉 =

I
∑

i=1

νΣfiφ
∗

00iφ00i ; (27)

〈Ψ∗, SΨ〉 =

I
∑

i=1

Σsiφ
∗

00iφ00i ; (28)

〈Ψ∗, CΨ〉 =

I
∑

i=1

N
∑

n=0

n
∑

m=−n

Σtiφ
∗

nmiφnmi ; (29)

〈Ψ∗, TΨ〉 =

I
∑

i=1

N
∑

n=0

n
∑

m=−n

φ∗nmiΓnmi . (30)
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In these equations, φnmi and Γnmi are defined by:

φnmi =

∫

Vi

∫

4π
Ynm(Ω)Ψ(r,Ω)dΩd3r , (31)

and

Γnmi =

∫

∂Vi

∫

4π
(Ω · ni)Ynm(Ω)Ψ(r,Ω)dΩd2r , (32)

for 0 ≤ n ≤ N and −n ≤ m ≤ n. These space-angle moments of Ψ can easily be estimated by standard
Monte Carlo techniques. In this paper, we estimate φnmi by a track length estimator and Γnmi by a surface
crossing estimator. We emphasize that in the construction of the reduced functional, we have approximated
the adjoint flux by Eq. (22), but we have introduced no such approximation to the forward flux. Hence, if
the exact forward flux is introduced into the reduced functional, the exact eigenvalue k is obtained.

Using Eqs. (22) and (27)-(30), Eq. (23) can be completely evaluated with both adjoint and forward Monte
Carlo calculations. In this implementation of the VVR method, the adjoint information is provided by Eq.
(21), while the forward information is provided by Eqs. (31) and (32). We again emphasize that the
resulting expression is an unbiased estimator for k.

When using the above VVR method in performing a criticality calculation, generations of neutrons are
followed as in traditional Monte Carlo. Neutrons in a given generation are tracked, and the resulting
information is used to provide an estimate of k and source locations for the next generation [15]. However,
a “full generation” for this VVR method consists of both a generation of forward particles and a generation
of adjoint particles. At the end of each such “full” generation, we introduce estimates of φnmi, Γnmi, and
φ∗nmi into Eqs. (27)-(30) to evaluate H [Eq. (23)]. Thus, a variationally-calculated estimate of k is provided
by each generation. These generation-wise estimates are then used to calculate a mean and a sample
variance, as in traditional Monte Carlo.

If a deterministic method is used to estimate the adjoint flux, then the constants φ ∗

nmi are determined from
this calculation prior to the beginning of the Monte Carlo simulation. The subsequent Monte Carlo
simulation proceeds as described in the above paragraph, with the difference that only forward Monte
calculations are performed.

5. ERROR ANALYSIS OF VARIATIONAL ESTIMATES

Now we discuss the performance of the VVR method described above. From Eq. (20), for each individual
fission generation, the error in the variationally-estimated eigenvalue satisfies

Error = O(δψδψ∗) . (33)

If the error in the Monte Carlo-estimated forward flux is O(1/
√
N), where N is the number of histories

simulated to estimate the forward flux (i.e. the number of forward neutrons simulated per fission
generation), Eq. (33) gives

Error = O(
δψ∗

√
N

) , (34)

where δψ∗ is the error in the adjoint flux estimate. For a fixed estimate of the adjoint flux, Eq. (34) is
characteristic of most Monte Carlo simulations, the error being inversely proportional to the square root of
the computational effort. However, the standard deviation is now proportional to δψ∗, the error in the
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adjoint flux estimate. If δψ ∗ = 0, the variance is zero, and one has a zero-variance method. (As with all
other known zero-variance methods, to achieve this one must know the adjoint flux exactly.) If δψ ∗ is
small, the variance in the estimation of k is small. In previous implementations of the VVR method [3–11],
we have estimated the adjoint flux by a deterministic calculation, in which case the adjoint flux estimate is
fixed and δψ∗ is “small,” the degree of smallness depending on the accuracy of the technique used to
perform the adjoint calculation. As predicted by Eq. (34), we observed convergence of the estimate of k
with O(1/

√
N) error, but with a much smaller variance than observed with the standard Monte Carlo

method for estimating k.

However, if the adjoint estimate is not fixed, but instead the forward and the adjoint flux estimates are
obtained using Monte Carlo – each having error O(1/

√
N) (N is now the number of forward and adjoint

histories per fission generation; the total number of histories simulated is 2N ) – the error in Eq. (33)
becomes:

Error = O(
1

N
) . (35)

Thus, in the presence of only statistical errors, i.e. δψ = O(1/
√
N) and δψ∗ = O(1/

√
N), the error in the

estimate of k at the end of each fission generation decreases more rapidly with respect to computational
effort when Monte Carlo is employed to generate both the forward and adjoint flux estimates.
Unfortunately, the increased convergence rate predicted by Eq. (35) will not continue indefinitely. Due to
the bilinear form of the variational functional, it is necessary to represent the adjoint flux estimate as a
function in phase space [Eq. (22)], and this representation inevitably contains a truncation error. (The
estimate of the forward flux is treated continuously in angle and space.) The truncation error present in the
representation of the adjoint flux will dominate the error in the Monte Carlo adjoint simulation for N large,
in which case the error will converge as O(1/

√
N). However, for N not large, a convergence rate faster

than O(1/
√
N) will occur.

To illustrate the effect of the truncation error in Eq. (22), we write the error in the forward flux estimate as

δψ =
A√
N

, (36)

and the error in the adjoint flux estimate as

δψ∗ =
A∗

√
N

+B∗ . (37)

Here, A and A∗ are constants related to the variance in the forward and adjoint Monte Carlo simulations,
respectively, and B∗ is a measure of the truncation error present in the adjoint flux representation, Eq. (22).
By Eq. (33), the error in the VVR estimate of k satisfies

Error ∼=
(

A√
N

)(

A∗

√
N

+B∗

)

. (38)

If the truncation error is much smaller than the statistical error (if A∗/
√
N � B∗), then the error is given

by:

Error ≈ AA∗

N
, N �

(

A∗

B∗

)2

. (39)

If the truncation error dominates the statistical error, (if A∗/
√
N � B∗), then the error is O(1/

√
N):

Error ≈ AB∗

√
N

,

(

A∗

B∗

)2

� N . (40)
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Figure 1. Convergence of Monte Carlo Adjoint VVR

The transition point between these two behaviors of the error in the VVR-estimated eigenvalue,

N ∼=
(

A∗

B∗

)2

, (41)

is large if the truncation error B∗ is small. Thus, if the spatial and angular representation of the adjoint flux
estimate is sufficiently accurate, the VVR method employing both forward and adjoint Monte Carlo
simulations will converge as O(1/N) for a significant number of histories N .

In Figure 1 we sketch (i) the behavior of standard Monte Carlo k-eigenvalue calculations, and (ii) the
predictions of the theory outlined above for the Monte Carlo adjoint VVR method. The slopes of the lines
are indicated explicitly in the figure. Our actual numerical simulations, discussed in the next section, bear a
closer resemblance to the left half of Figure 1 than the right half. However, there is little doubt that for
large N , the experimentally-observed VVR error must eventually decline as N−1/2.

We now relate the error predictions described above to the variance observed in a Monte Carlo simulation.
We consider a criticality calculation that employs M fission generations and N histories (forward or
adjoint) per fission generation. Each generation produces an estimate of the exact eigenvalue k of the form

km = k + em , (42)

where km is the eigenvalue estimate of the mth fission generation and em represents the statistical error in
the eigenvalue estimate. The expected value of the generation-wise eigenvalue estimates is given by

k = E[km] = k +E[em] , (43)

which is the exact eigenvalue if the expected value of the statistical error is zero (i.e. the simulation is
unbiased). The variance in the generation-wise eigenvalue estimates is

σ2 = E[(k − km)2] = E[e2m] . (44)
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Table I. Monoenergetic Cross-Sections

Material Σt Σs νΣfg

Fuel 0.444 0.344 0.12
Moderator 0.267 0.262 -

If the statistical error is given by Eq. (34), the standard deviation of the Monte Carlo simulation is given by

σ = O(
1√
N

) . (45)

This corresponds to a standard Monte Carlo simulation or the VVR method employing a
deterministically-calculated adjoint flux. However, if the VVR method is used with Monte Carlo-calculated
forward and adjoint fluxes, then the statistical error in the eigenvalue estimate is given by Eq. (35), and the
standard deviation in the Monte Carlo simulation is

σ = O(
1

N
) . (46)

In practice, the standard deviation of the mean is usually reported in the results of a Monte Carlo
simulation,

σk =
σ√
M

. (47)

In this case, the statistical uncertainty in the Monte Carlo adjoint VVR method decreases as O(1/N) with
respect to the number of histories simulated per fission generation, but only as O(1/

√
M ) with respect to

the number of fission generations employed. In the numerical simulations described below, we fix the total
number of fission generations, and observe the decrease in statistical uncertainty as the number of histories
simulated per fission generation increases. For a fixed amount of work, this strategy should minimize the
overall statistical errors in the Monte Carlo adjoint VVR method.

6. NUMERICAL RESULTS

We now present the results from two three-dimensional criticality problems of the form of Eq. (1). In these
problems, the VVR method with analog tracking is compared to a traditional Monte Carlo calculation
using a track-length estimate of the direct functional and survival biasing. (Due to the extra computational
expense per history, the VVR method becomes less efficient when used in combination with survival
biasing. Hence, we do not present results using the VVR method with survival biasing.)

In comparing the VVR method to traditional Monte Carlo, we examine two three-dimensional criticality
problems. Each problem consists of a 25 cm × 25 cm × 25 cm cubic reactor, with reflective boundaries on
the x = 0, y = 0, and z = 0 surfaces and vacuum conditions on all other boundaries. (This corresponds to
a 50 cm × 50 cm × 50 cm symmetric reactor with only one-eighth of the reactor being modeled). The first
problem is an array of 5 cm × 5 cm × 20 cm fuel assemblies in moderator material, with the entire reactor
surrounded by 5 cm of moderator material. A diagram of this reactor through the z = 0 and y = 0 planes is
given in Figure 2. The cross-sections used in this problem are given in Table I, in units of cm−1.

We also examine a more difficult reactor with a voided moderator channel. A plot of this voided-channel
reactor through the z = 0 and y = 10 planes is given in Figure 3. The voided channel is simulated by
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dividing the moderator cross-sections by a factor of 100, and the void is continued through the reflector to
the exterior surface of the reactor.

The two problems described above were simulated using a traditional Monte Carlo calculation employing
survival biasing (SB), along with several VVR schemes. These simulations employed 10,000, 50,000,
100,000, 500,000, and 1,000,000 histories per fission generation, along with 225 total fission generations
and 25 “skipped” or “inactive” generations. The VVR schemes included P1 and P3 representations using a
Monte Carlo adjoint (P1-MC and P3-MC), and a P1 representation of the adjoint using a deterministic
diffusion calculation (P1-D). In the Monte Carlo-adjoint VVR methods, the same number of particles were
used in the forward and adjoint calculations. These simulations were performed using a 2.5 cm tally grid,
while the diffusion calculations were performed on a 1.25 cm grid for spatial discretization.

The statistical error (one standard deviation) in k as a function of computer time for the first problem is
given in Figure 4. Since computer time is proportional to the number of histories simulated, the slope of the
error should be −1/2 if the error is given by Eq. (34), and -1 if the error is given by Eq. (35). From
Figure 4, both the traditional Monte Carlo error and the diffusion-estimated adjoint VVR error have the
expected slope of -1/2. The P1-MC and P3-MC VVR methods converge at a much steeper rate, with a slope
close to −1. The efficiency of these methods is less than that of the P1-D VVR method, due to the extra
expense of the Monte Carlo adjoint simulation. However, as more particles are simulated, the efficiency of
the P1-MC and P3-MC methods should eventually surpass that of the P1-D method. The P3-MC method is
less efficient than the P1-MC method, due to the increased number of tallies collected in both the forward
and adjoint calculations. However, the P3-MC method converges slightly faster than the P1-MC method,
and it is likely that for very large computing times, the P3-MC method will become more efficient.

Next, we examine the more difficult voided-channel problem. The statistical error (one standard deviation)
in k as a function of computer time at the end of the Monte Carlo simulation is given in Figure 5. Again,
we see that the traditional Monte Carlo simulation and the P1-D VVR method converge as 1/

√
N , while

the P1-MC and P3-MC errors decrease at a faster rate. For this problem, the P1-MC method outperforms
the P1-D method for large number of histories per generation because of the greater accuracy of the adjoint
Monte Carlo calculation (the diffusion adjoint is not accurate in the void region). As before, the P3-MC
VVR method does not perform as well as the P1-MC method, due to the cost of the extra adjoint and
forward tallies required. However, as more particles are simulated and the accuracy of the adjoint
representation increases, the P3-MC method should eventually outperform the P1-MC method.

7. CONCLUSIONS

We have examined the use of Monte Carlo-generated forward and adjoint flux estimates for k-eigenvalue
problems employing the Variational Variance Reduction technique. In this method, forward and adjoint
flux estimates are used to evaluate a variational functional that is theoretically more accurate than the direct
functional employed in traditional Monte Carlo calculations. When forward and adjoint Monte Carlo
simulations are used in the VVR method, the statistical error will converge at an O(1/N) rate, provided the
truncation error in the representation of the adjoint flux estimate is small compared to the statistical error.
For N very large, the truncation error in the representation of the adjoint flux estimate will be large
compared to the statistical error, and the statistical error in k will converge at the usual O(1/

√
N) rate.

In two example 3-D k-eigenvalue problems, we observed an increased convergence rate in the estimate of k
when the VVR method is employed with Monte Carlo adjoint simulation. For reasonable numbers of
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histories, the Monte Carlo adjoint VVR method is more efficient than the traditional Monte Carlo
simulation, but less efficient than the VVR method employing a deterministic diffusion calculation. As the
number of histories increases (and if the problem is such that the diffusion calculation produces a
less-than-accurate solution) the Monte Carlo adjoint VVR method can outperform other VVR methods that
use a deterministic adjoint.

The VVR techniques described in this paper do not require a nonanalog simulation of the forward Monte
Carlo particles. Variance reduction occurs because of the processing of the forward and adjoint flux
information in the variational functional. However, it is possible to run either the forward or the adjoint
Monte Carlo simulations using nonanalog techniques, e.g. survival biasing. The VVR method requires
only a good estimate of the adjoint flux and an unbiased estimate of the forward flux; it does not care
whether these estimates come from analog Monte Carlo calculations, nonanalog Monte Carlo calculations,
or (for the adjoint flux) deterministic calculations. Simulations not shown in this paper indicate that with
survival biasing, the VVR methods become less efficient because the longer times required to process
particle histories do not outweigh the gain in accuracy [7, 9, 10]. Thus, the VVR simulations presented in
this paper used only analog methods to process the histories of Monte Carlo particles. However, there may
exist classes of problems for which the use of nonanalog techniques with VVR is advantageous, and if this
is the case, then nonanalog techniques can be used.

Our numerical results suggest that the use of a deterministic adjoint in the VVR method is generally more
efficient than the use of a Monte Carlo adjoint. However, there are several practical issues that this
judgment does not take into account:

1. First, the Monte Carlo adjoint VVR method is generally more efficient than the standard Monte
Carlo method for estimating k. Thus – without comparisons to the deterministic adjoint VVR
method – the Monte Carlo adjoint VVR method represents generally a gain in efficiency.

2. Developing a Monte Carlo-only VVR code may be easier and require less programming effort than
developing a pair of codes (one deterministic, one Monte Carlo) that must be run in tandem, or one
dual-purpose code containing both deterministic and Monte Carlo methods.

3. A Monte Carlo-only VVR code would probably be more user-friendly. For example, it would not
require the user to understand the accuracy-limitations of a deterministic method that should be
weighed in selecting a spatial discretization. A code user would not need to be knowledgeable about
both deterministic and Monte Carlo methods.

4. For especially difficult problems, such as ones containing voids and streaming regions – for which
deterministic methods are prone to error – it may be advantageous to use a Monte Carlo adjoint in
which one has confidence that the estimations will improve with computing time.

5. If estimations of k are required at the level of accuracy where the Monte Carlo adjoint VVR and
deterministic adjoint VVR errors generally cross (see Figures 4 and 5), then there is no
computational gain in employing a deterministic adjoint.

In any case, we hope that this paper makes a strong argument that for many criticality problems it is more
computationally-advantageous to use the VVR method to estimate k than the standard method – whether
one uses a Monte Carlo estimate or a deterministic estimate for the adjoint flux.
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Finally, although this paper considers only monoenergetic, isotropic, scattering criticality problems, the
adjoint Monte Carlo VVR method can be extended without conceptual difficulty to source-detector
problems, or to more realistic energy-dependent (criticality or source-detector) problems with anisotropic
scattering. These generalizations will be the subject of future work.
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