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ABSTRACT 
 

Cell by cell homogenized transport calculations of an entire nuclear reactor core are currently too 
expensive for industrial applications, even if a simplified transport (SPn) approximation is used. In 
order to take advantage of parallel computers, we propose here two domain decomposition 
methods using the mixed dual finite element solver MINOS. The first one is a modal synthesis 
method on overlapping subdomains: several eigenmodes solutions of a local problem on each 
subdomain are taken as basis functions used for the resolution of the global problem on the whole 
domain. The second one is an iterative method based on non-overlapping domain decomposition 
with Robin interface conditions. At each iteration, we solve the problem on each subdomain with 
the interface conditions given by the solutions on the close subdomains estimated at the previous 
iteration. For these two methods, we give numerical results which demonstrate their accuracy and 
their efficiency for the diffusion model on realistic 2D and 3D cores. 
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1. INTRODUCTION 
 
Cell by cell homogenized transport calculations of an entire nuclear reactor core are currently too 
expensive for industrial applications, even if a simplified transport ( ) approximation is used. NSP
A way to decrease the computation time and the local memory requirement is to use a domain 
decomposition method. It is particularly well fitted for parallel computers: calculations are 
distributed on several subdomains, and as many processors as subdomains can be used. We 
propose here two approaches based on domain decomposition.  
The first one is a modal synthesis approximation [1]: the global flux is expanded on a finite set of 
basis functions obtained on overlapping subdomains. The global exact cell by cell problem is 
solved in the finite spaces spanned by the different local functions. Two techniques are presented 
in order to obtain these basis functions [2].  
The second approach is an iterative domain decomposition method using non overlapping 
subdomains and Robin interface conditions.  
Even if these methods could be applied to a  approximation, we demonstrate here their 
accuracy for the diffusion model. They are implemented in the framework of the existing 
MINOS solver [3], which uses a mixed dual finite element method for the resolution of diffusion 
and  equations in 3D cartesian homogenized geometries. 

NSP

NSP
We present results for these two methods on realistic 2D and 3D cores: we show the accuracy of 
the solutions and the efficiency of the codes on parallel computers. 
 

mailto:pierre.guerin@cea.fr
mailto:anne-marie.baudron@cea.fr
mailto:jean-jacques.lautard@cea.fr


Pierre Guérin, Anne-Marie Baudron and Jean-Jacques Lautard 
 

2. THE MINOS SOLVER 
 
The MINOS solver is one of the main core computational tools of the CRONOS2 system. This 
solver is reported in the new generation neutronic system DESCARTES and has therefore been 
rewritten in the C++ language [3].  
MINOS solves diffusion or  multigroup equations. It is based on a mixed-dual formulation 
of these problems, and it uses simultaneously scalar functions (even components) and vector 
functions (odd components). For  and diffusion equations, the even component is the scalar 
flux and the odd component is the current. 

NSP

1SP

If R is a bounded domain (in fact the core) with boundary R∂ , the steady-state diffusion problem 
is an eigenvalue problem, and its mixed (flux ϕ , current pr ) formulation reads as follows for 
each energy group, with zero flux boundary conditions: 
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where  is the fission source and  is the scattering source, both due to the contribution of the 
other groups. D is the diffusion coefficient and 

fS ϕS
σ  is the removal cross section. 

The dual variational formulation of this problem is obtained by projecting the two equations of 
problem (1) on two different functional spaces, and applying the Green formula to the first 
equation. We obtain the variational problem for each group: find the fundamental eigenmode 

, and ),( RdivHp∈r )(2 RL∈ϕ λ  solution of the problem 
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where   [ ]{ } dimension. space  thewith)(.;)(),( 22 SRLqRLqRdivH S

∈∇∈=
rrr  

The Raviart-Thomas-Nedelec ( ) elements are used to discretize the different functional 
spaces. To ensure consistency, the divergence of the vector space lies within the scalar space. 
Then it can be shown that the discrete solution converges to the exact continuous one. The use of 
these elements yields sparse matrices with coupling terms oriented only along each considered 
axis. Various boundary conditions can be taken into account in MINOS such as zero flux, 
reflection, void, albedo, translation and rotation. Discontinuity conditions on the scalar flux can 
also be taken into account. 

NRT
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3. THE MODAL SYNTHESIS METHOD 

3.1.  The Component Mode Synthesis (CMS) method 
 
The principle of the CMS method lies in the decomposition of the global domain in subdomains, 
which can be overlapping or not. Here we choose overlapping subdomains, as motivated by [1].  
We have adapted the CMS method to the steady state neutronic equations written in the mixed 

dual formulation [2]. We split the domain R into overlapping subdomains such that: . 

On each
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1),,( λϕ r  solutions of local diffusion 

problems using infinite medium boundary conditions on the interfaces which are not on the core 
boundary, and the actual core boundary conditions otherwise. In order to have functions defined 
on the whole domain, we extend the local solutions by 0 (denoted by a ~). Finally the global 
diffusion problem (2) is discretized on the finite dimension spaces spanned by all these 
functions:  
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where the subscript d denotes a given space direction. Only the d-component of k

dip ,
~r  is non zero: 
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The fundamental solution ),,( δδδ λϕ pr of the global diffusion problem discretized on these spaces 

can be written as linear combinations of the local eigenfunctions:  for the 

current and  for the flux. A linear system of the following form (generalized 

eigenvalue problem) in the scalar coefficients 
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where A and T correspond to the application of bilinear forms on the local eigenmodes used to 

span  and . Since these forms are integrals on δW δV lk RR
o

∩  ( lk RR
o

∩  is defined as the interior 
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of lk RR ∩ ),  are sparse: their constituting blocks vanish as soon as  (see 
[2] for more details). 

TA and ∅=∩ lk RR
o

3.2.  The Factorized (FCMS) method 
 
The determination of multiple eigenfunctions on each subdomain is expensive in terms of 
computing time and memory storage. In the FCMS method, only the fundamental mode is 
performed on each subdomain, and we replace the higher order modes by suitably chosen 
functions. The idea, coming from homogenization results, is to factorize the higher order modes. 
In this view, we mention the following factorization principle for the diffusion model, proved in 
[4]: in a periodic core, the i-th flux eigenmode solution of the diffusion problem can be 
asymptotically written ψϕ ×≈ ii u  with ψ  the fundamental periodic solution of the problem on 
each assembly with infinite medium boundary conditions, and  the i-th eigenfunction solution 
of a homogenized diffusion problem on the whole core. 

iu

For a non-periodic core, we adapt the above factorization principle on each subdomain of our 
core decomposition. Our goal is to build basis functions that take into account the heterogeneous 
fine structure of the core, based only on the fundamental solutions ),( kkp ϕr  of the local 
problems. We define our new local flux basis functions as follows: )(~ 2 RLk

i ∈ϕ
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where  are analytical solutions (sines or cosines) of homogenized diffusion problems on k

iu kR , 
with reflective boundary conditions on . RRk ∂∂ \ 
Unfortunately, we have no such factorization property for the current. We define the current basis 
functions in the d direction according to: 
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The resolution of the global problem is the same as in subsection 3.1: we modify only the basis 
functions, replacing the higher order local eigenmodes by the functions (5) for the flux and (6) 
for the current. 
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3.3.  Numerical results 
 
In order to validate CMS and FCMS methods for neutronic core calculations, we use a realistic 
model of a 2D PWR 900 MWe core loaded with a set of UOX and MOX assemblies (Fig. 1a). 
Fig. 1b and 1c represent the proposed couple of decompositions in 201 subdomains for this core. 
We have chosen the internal subdomain boundaries on the middle of the assemblies, where the 
infinite medium boundary condition is believed to be close to the real value.We present in Table I 
results for CMS and FCMS methods, compared to the direct cell by cell calculation obtained by 
the MINOS solver. We use a 2D diffusion calculation with two energy groups. 
 
 

Table I: Differences between CMS, FCMS and MINOS solutions. . 17961.1=effk
 

 CMS method 
4 flux modes, 6 current modes 

FCMS method 
6 flux modes, 11 current modes 

effk∆  (pcm) 4.4 2.2 

2

2
P

P∆  3103.4 −×  3101.3 −×  

∞
∆P  2100.5 −×  

2104.2 −×  
 
 

   
a. PWR core b. First subdomains c. Other subdomains 

 
Figure 1.  PWR core and its domain decomposition. 

 

3.4.  Parallelization 
 

Joint International Topical Meeting on Mathematics & Computation and  5/10 

Contrary to many domain decomposition methods, the CMS algorithm is not iterative (see Fig. 
2). One can decompose it into three steps: first the local resolutions on the subdomains, second 
the matrix calculations and finally the global resolution on the whole domain. Each processor 
performs at least one subdomain calculation. No communications are requested for the local 
resolutions, since they are completely independent. Some exchanges of the local solutions are 
necessary for the matrix calculations, but only between the overlapping subdomains. Each 
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processor performs the submatrix calculations associated to its subdomains, and has to send them 
to the master processor for the sequential global resolution. 
We illustrate the computing times and the efficiency of the code in parallel in Fig. 3. The 3D-
core is a PWR 900-MWe split into 20 planes in the z-axis: the first and the last ones are 
reflectors; the other ones use the same grid as in two dimensions (see Fig. 1a). We use in these 
tests the FCMS method with 6 flux modes and 11 current modes. The domain is decomposed in 
49 overlapping subdomains (in the X- and Y- directions). The computer used is an AMD 
Opteron cluster. Each node of the cluster is a 2.4 GHz quadriprocessor with 4 GB of shared 
memory. The nodes are connected via a high performance switch (Infiniband). We compare the 
computing times between the direct MINOS calculation and our FCMS method using from 1 to 
25 processors.  
 
 

Joint International Topical Meeting on Mathematics & Computation and  6/10 

 
 

Figure 2.  CMS flowchart. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Real computing times and efficiency of the parallel code. 
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4. AN ITERATIVE DOMAIN DECOMPOSITION (IDD) METHOD 

4.1. Introduction 
 
In order to compare the previous methods with another domain decomposition technique, and to 
reduce the computing times and the memory requirement, we have developed an iterative 

scheme, proposed by P. L. Lions [5]. Let    a non-overlapping domain decomposition. 

The idea is to iterate the resolution of local problems on each subdomain, using Robin interface 
conditions. This condition on an internal subdomain boundary, at a given iteration, consists to 
impose the corresponding boundary value of the solution obtained on the close subdomain at the 
previous iteration. The iterative resolution of the diffusion problem (1) with the IDD method 
reads, on each subdomain 

k
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where  is a positive coefficient ( can be different on each interface) and . 

 and  are the outward normals on 
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where . The outer iterations allow simultaneously the convergence of the 
eigenvalue problem and of the domain decomposition scheme. 
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4.2. Parallelization 
 
We have implemented the IDD method in the DESCARTES project with the C++ language. Fig. 
4 presents the flowchart of the different steps of the algorithm. One of its advantage is that it 
needs only minor modification of the MINOS solver. Only two data exchanges per outer iteration 
are necessary between the processes: one for the interface condition exchanges between the close 
subdomains, and one for the  calculation. The domain decomposition is automatic, by 
imposing the same size for all the subdomains. It ensures a good balance of the load of the 
processors. 

effk
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Figure 4.  IDD flowchart. 
 

4.3.  Numerical results 
 
In order to validate the IDD method for multigroup eigenvalue diffusion problems, we use two 
geometries: the first one is a 3D PWR 900 MWe core (the size of the mesh is 40289289 ×× ), 
and the second one is a 2D model of the JHR (Jules Horowitz Reactor) core [6], for which we 
use a very fine mesh ( ) in order to have a good cartesian projection of the complex 
geometry. In Tables II and III we study the accuracy and the efficiency of the IDD method:  we 
compare a reference full converged MINOS calculation to a MINOS calculation and IDD 
calculations converged with a criterion of on the infinite norm of the fission source. 
Different numbers of subdomains are tested, with the same 

10001000×

510−

α  coefficient for all the interfaces. 
Table II is relative to the PWR calculations with two energy groups. We use 1=α  for the fast 
group and  for the thermal one. Table III concerns the JHR results with 6 energy 
groups, and we use  for all the groups. The computer used is described in subsection 3.4. 

2105 −×=α
210−=α

We obtain the same conclusions with the two geometries. In almost all the cases, the number of 
outer iterations is very near the MINOS one, what means that the domain decomposition does 
not increase it. Thus the efficiency of the IDD method is very good, especially in the JHR case. 
In terms of accuracy, it is very satisfactory, even with many subdomains. In the PWR case, the 
accuracy variations are due to the numerical discretization of the interface conditions. Thus the 
accuracy is better when the domain decomposition corresponds to the symmetry axes of the core. 
This is the case in Table II for 2, 4 and 8 subdomains. In the JHR case, the interface condition 
discretization is better because the mesh is finer. We plan to improve these results with optimal 
and automatic estimation of the values of the α  coefficient in the Robin interface conditions, as 
motivated by [7]. 
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Table II: Results for the 3D PWR. Comparison with a reference full converged direct 
MINOS calculation (10 000 outer iterations). Stop criterion:  on the infinite norm of the 
flux. The first line corresponds to the MINOS calculation. The other ones are related to the 

IDD method with different domain decompositions in the three directions (

510−

zyx nnn ×× ). 
The number of processors is equal to the number of subdomains. . 05208.1=effk

 

 Number of 
iterations 

effk∆  
(pcm) )10( 4

22
−×

∆ PP

)10( 3−
∞

×

∆P
 Elapsed 

time (s.) 
Efficiency per 
iteration (%) 

MINOS 249 12 7,7  8,7  339 100 
2  ( ) 112 ×× 247 11 7,7  9,7  214 79 
4  ( ) 122 ×× 252 11 8,7  6,7  100 86 
6  ( ) 123 ×× 278 29 21  11 95 66 
8  ( ) 222 ×× 253 11 10  10  66 65 
9  ( ) 133 ×× 280 48 25  13  61 69 

12  ( ) 134 ×× 257 63 26  15  45 65 
16  ( ) 144 ×× 251 77 28  13  34 63 
18  ( ) 233 ×× 281 48 26  18  36 59 

 
 

Table III: Results for the 2D JHR (see the Table II caption). The full converged MINOS 
calculation uses 50 000 outer iterations. 30857.1=effk . 

 

 Number of 
iterations 

effk∆  
(pcm) )10( 3

22
−×

∆ PP
 

)10( 2−
∞

×

∆P
 Elapsed 

time (s.) 
Efficiency per 
iteration (%) 

MINOS 941 78 2,4  1,5  1490 100 
2  ( ) 12× 917 78 3,4  2,5  581 125 
4  ( ) 22× 978 78 2,4  0,5  357 108 
6  ( ) 23× 1068 68 1,4  0,5  344 82 
8  ( ) 24× 950 64 2,4  0,5  165 114 
9  ( ) 33× 1004 63 2,4  1,5  171 103 

12  ( ) 34× 1050 53 1,4  8,4  105 132 
16  ( ) 44× 978 55 1,4  0,5  76 127 
20  ( ) 45× 1051 55 1,4  9,4  65 128 
25  ( ) 55× 1129 52 2,4  7,4  55 130 
30  ( ) 56× 1647 43 5,3  0,4  59 147 
36  ( ) 66× 1062 58 2,4  0,5  34 138 
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5.  CONCLUSION  
 
The domain decomposition techniques can answer to the need of a fast 3D  solver. The 
applications of the component mode synthesis method to cell by cell core calculations give a 
good accuracy for the  as well as for the local cell power. The total independence of the local 
mode calculations leads to a code well-fitted for parallel computers: the computing time with 
enough processors is smaller than the direct calculation one. Nevertheless, this method remains 
expensive, thus we have developed an iterative scheme based on non-overlapping subdomains 
and Robin interface conditions. The results are very good: the number of outer iterations does not 
increase compared to the direct solver. The accuracy of the method is very satisfactory, and the 
efficiency on parallel computers is very high. We plan to improve it with optimal and automatic 
values of the 

NSP

effk

α  coefficient in the Robin interface conditions. We will apply this promising 
method on complex 3D cores (JHR, EPR…), what is currently impossible because of the 
computing time or the memory requirement. 
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