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ABSTRACT

This paper describes the verification of the recently developed space-angle self-adaptive algorithm for
the finite element-spherical harmonics method via the Method of Manufactured Solutions. This method
provides a simple, yet robust way for verifying the theoretical properties of the adaptive algorithm and
interfaces very well with the underlying second-order, even-parity trasnport formulation. Simple
analytic solutions in both spatial and angular variables are manufactured to assess the theoretical
performance of the a posteriori error estimates. The numerical results confirm reliability of the
developed space-angle error indicators.
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1. INTRODUCTION

Efficient use of computational resources is the key to practical radiation modeling and this has become the
main focus of recent research into numerical transport methods. A posteriori error analysis combined with
adaptive mesh refinement [1] provides a powerful numerical framework for minimizing discretization error
and computational effort, and is gradually being recognized as the main way forward. However, though
proper implementation of this combined adaptive methodology can potentially enhance the capability of
existing computer codes, rigorous verification of the numerical implementation of the theory is necessary
in order to avoid the potential performance gains being offset by the added algorithmic complexity.

Verification of deterministic radiation transport methods is traditionally performed by benchmarking the
numerical results against Monte Carlo solutions (i.e. [2]). Due to the nature of the Monte Carlo method,
the benchmark values are often reported in terms of local integral quantities such as pin power and dose
rate, or global characteristics such as the effective multiplication constant (keff ). This kind of
benchmarking effort often suffices to check the capability and accuracy of the computer code. However, it
does not render itself to assessing the theoretical performance of new algorithms, in particular adaptive
ones, since it lacks the fine details of the phase-space solution. An alternative would be to use analytical
benchmarks but their range of applicability is somewhat limited.

In this work, we employ the Method of Manufactured Solutions (MMS) [4] to assess the combined
space-angle adaptivity algorithm which has been recently developed [3]. The MMS is a simple, yet robust
methodology suitable for the analysis of the theoretical properties of numerical schemes. The basic
strategy of the MMS is to compute the artificial source term by substituting any desired form of the analytic
solutions into the governing differential equations. Thus, a large group of the analytical solutions can be
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considered for the numerical tests. In our case, the global analytical solutions are used to evaluate the
reliability of the a posteriori error indicators rather than comparing the convergence rates.

2. THE METHOD OF MANUFACTURED SOLUTIONS IN THE EVEN-PARITY TRANSPORT
FRAMEWORK

2.1. Coupled Space-Angle Adaptivity Algorithm in the Finite Element-Spherical Harmonics Method

Our radiation transport model is based on the variational formulation for the second-order, even-parity
form of the transport equation [5] :

K+[ψ] = (Ω · ∇ψ,GΩ · ∇ψ) + (ψ,Cψ)+ < ψ,ψ > −2(ψ, S+)− 2 < ψ, T > −2(Ω · ∇ψ,GS−) (1)

where ψ is the trial function, S± are the parity components of the prescribed source, and G and C are the
integral collision operators. Discretization of Eq. (1) is achieved via the well-known Ritz Galerkin method
using a trial function of the form:

ψ(r,Ω) =
E∑

e=1

BeT (r)⊗QT (Ω)ψe (2)

where, Be(r) and Q(Ω) are the vectors that contain the spatial and angular basis function, respectively.
Substituting the Eq. (2) into (1) yields the reduced functional:

K+[ψ] =
E∑

e=1

ψeTAeψe − 2ψT b (3)

where,

Ae = (Ω · ∇BeT ⊗QT , GΩ · ∇BeT ⊗QT )+(BeT ⊗QT , CBeT ⊗QT )+ < BeT ⊗QT , BeT ⊗QT > (4)

and
be = (BeT ⊗QT , S+)+ < BeT ⊗QT , T > +(Ω · ∇BeT ⊗QT , GΩ · ∇S−) (5)

Taking the first variation of Eq. (3) and requiring to vanish, we obtain the system of the equation of the
form [6]:

Aψ = b (6)

Our adaptivity algorithm employs a residual-based a posteriori error analysis [1] and makes use of the
hierarchical property of the spherical harmonics basis functions. The spatial convergence of given PN

approximations is first checked against the spatially continuous PN solution. Then the converged PN

approximation is projected onto the higher-order space in order to estimate the angular truncation errors.
We employ the explicit error estimator in the space (Eq. (7)), and the implicit estimator in angular variables
(Eq. (8)).

η2
E = min{h4

Eσ
2
t ,

1
σ2

a

}||R(ψh,N )||2L2(E×Ω) + min{h3
Eσ

2
t ,

1
σ2

a

}||Rγ(ψh,N )||2L2(∂E×Ω) (7)

F [φ, eh,N ] = F [φ, ψ]− F [φ, ψh,N ]
= Fs[φ]− F [φ, ψh,N ] (8)

=
∫

4π
dΩ

∫

V
dV φR(ψh,N ) +

∫

4π
dΩ

∫

∂V
dΓ(n ·Ω)φ < G(Ω · ∇ψh,N − S−) >

where ηE is the estimated spatial L2 discretization error in the element E, and functions R and Rγ are the
finite element residual in the volume and surface term, respectively. The term eh,N is the angular truncation
error of the PN approximation.
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2.2. The Method of Manufactured Solutions

As mentioned earlier, the main idea behind the MMS is to compute the artificial source term which results
from substituting any desired form for the analytic solutions into the governing differential equations. Due
to the implicit treatment of the scattering kernels [6], and separation of the source into the parity
components, the MMS framework naturally fits into the even-parity transport formulation. The
second-order, even-parity transport equation can be written as:

−Ω · ∇GΩ · ∇φ+ + Cφ+ = S+ −Ω · ∇GS− (9)

By simply comparing the RHS and LHS term by term, the parity components of the source terms may be
computed from the even-parity flux as:

S+ = Cφ+ (10)

S− = Ω · ∇φ+ (11)

The next step is to specify boundary conditions. Two commonly used boundary conditions are the
reflective and the vacuum boundary conditions. The reflective boundary condition can be specified
anywhere at the plane of symmetry. On the other hand, the vacuum boundary condition can be used in any
location by specifying a suitable surface source. Denoting the even-parity flux at boundary Γ as φΓ, a
proper boundary condition can be provided by setting the surface source term T to the boundary flux φΓ:

T = φΓ (12)

3. NUMERICAL RESULTS

In this section, we present the verification steps of the coupled space-angle adaptivity algorithm by the
MMS. The main objective of this verification was to assess the effectiveness of the a posteriori error
indicators. In order to measure effectiveness of the developed a posteriori error estimators, we define the
effective index (EI) [7] as:

EI =
Estimated Error

True Error
(13)

It is clear that the error indicator is more effective if the EI is closer to one. Moreover, if the EI is greater
than unity, the adaptivity algorithm is considered as a conservative procedure.

3.1. Measure of Zero Error

The first test case was intended to demonstrate the capability of a posteriori error indicator to identify zero
error. The problem consisted of a 1.0x1.0cm square region, with total, absorption, and scattering cross
section values of 1.0cm−1, 1.0cm−1 and 0.0cm−1, respectively. The following form for the solution was
considered:

φ+(r,Ω) = x (14)

Since the linear basis function could characterize the solution exactly and there was no angular dependence
for this test problem, we expected that no spatial mesh refinement would take place and the computation
would terminate at the P1 approximation. The initial mesh and the resulting flux distribution are shown in
Figure 1. The spatial and angular global L2 errors after the first P1 calculation were calculated to be
2.305x10−8 and 1.929x10−8, respectively, which were within the round-off errors. Both space and angular
error estimators were, in fact, computed as effectively zero for this problem.
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(a) Initial mesh (b) Flux profile

Figure 1. Mesh and Flux Profile of the First Test Problem

3.2. Measure of Non-Zero Discretization Error with Smooth Solution

In the previous section, we have demonstrated that the spatial error indicator successfully estimated zero
error. In this section, we assess the validity of the spatial error indicator using simple analytic functions.
The test problem consisted of a uniform 10x10cm square region with the total cross section set to 1.0cm−1,
while the absorption and scattering cross sections were left free to vary in order to test the various cross
section sets (also see Section 3.2.1). The following even-parity solution was used:

φ+(r,Ω) =
N∑

l,even

l∑

m=0

1
2l

(2 + cos[
(l + 1)x
(y + 1)

])Y e
l,m(Ω) (15)

The relative convergence criterion was set to 1.0× 10−4. Figure 2 shows a relationship between the
relative error and total number of nodes in the P1 approximation. To reach a similar relative error, the
adaptive mesh reduced the number of nodes by about a factor of four. From Figure 3, we can observe that,
as expected, the adaptive mesh refinement clustered the mesh in the region where a large flux gradient was
present.

Table I lists the EI for several different spatial resolutions. The effective indices ranged between 3.0 and 4.0
for this test problem, implying that the explicit error indicator provided a conservative estimate. The
discrepancy between the exact and estimated error stemed from the unknown constant introduced for the
explicit estimators. In the first two iterations, the EI was rather large (20.98 and 14.10, respectively). This
was due to the inability of the coarse spatial discretizations to model the solution accurately. In such cases,
the error indicator did not work properly. This was not necessarily bad because the numerical solutions did
not represent the true solution anyway.
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Figure 2. Relative Error v.s. Number of Nodes (Scattering Ratio=0.8)
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(b) Final mesh

Figure 3. Flux Profile and Final Mesh of the Test Problem 2

Table I. Effective Index for Different Spatial Resolutions (Scattering Ratio=0.8)

No. of Nodes Estimated Error True Error Effective Index

13 7.60x10−01 3.61x10−02 21.02
41 1.35x10−01 1.25x10−02 10.76

138 1.23x10−02 3.66x10−03 3.37
286 3.46x10−03 1.14x10−03 3.04
507 1.16x10−03 3.35x10−04 3.45

1743 3.30x10−04 8.42x10−05 3.93
1831 3.18x10−04 7.83x10−05 4.06
7145 8.49x10−05 2.19x10−05 3.87
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3.2.1. Effect of cross sections to a posteriori error estimate

The next step was to check how the cross sections affected the a posteriori error estimates. To this end, the
following two sets of problems were solved:

• Varying the magnitude of the total cross section with a fixed scattering ratio

• Varying the scattering ratio with a fixed total cross section

Table II shows the EI’s obtained for the different total cross sections, while Table III shows the EI’s
obtained for the different scattering ratios.

Table II. Effective Index for Various Total Cross Section (Scattering Ratio=0.8)

σt Estimated Error True Error Effective Index

0.001 8.55x10−05 3.03x10−05 2.82
0.01 8.28x10−05 2.89x10−05 2.86
0.1 8.34x10−05 2.49x10−05 3.35
1 8.49x10−05 2.19x10−05 3.87
10 5.83x10−05 1.47x10−05 3.96

100 5.91x10−05 3.15x10−05 1.88
1000 5.93x10−05 3.07x10−05 1.93

Table III. Effective Index for for Various Scattering Ratio (σt = 1.0cm−1)

Scattering Ratio Estimated Error True Error Effective Index

0.001 8.85x10−05 2.05x10−05 4.31
0.01 8.83x10−05 2.05x10−05 4.31
0.1 8.73x10−05 2.04x10−05 4.28
0.8 8.49x10−05 2.19x10−05 3.88
0.9 8.48x10−05 2.26x10−05 3.75
0.99 8.48x10−05 2.44x10−05 3.47

0.999 8.48x10−05 2.49x10−05 3.40
1.000 8.48x10−05 2.50x10−05 3.39

From Table II, we note that the EI decreased as the total cross section deviated away from unity. However,
in all the cases presented here, the EI ranged between 2.0-4.0, which indicated insensitiveness of the EI to
the cross section magnitudes. The EI was much less sensitive to the scattering ratio variations, which can
be seen from Table III.
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3.2.2. Implicit angular error estimator

The next step was to verify the implicit angular error estimator. The maximum number of angular moments
(N ) in Eq. (15)was set to 2 and 4, respectively, such that the angularly converged solutions could be
obtained by the P3 and P5 approximations. Table IV shows the estimated and true angular errors.

From Table IV, it can be seen that the EI remained very close to 1.0, a result much better than those for the
spatial error indicator. The implicit error estimator solved the local finite element problems and it did not
introduce the unknown constant that was introduced in the explicit error estimator. Therefore, as we would
have expected, the implicit angular error indicator gave very reliable estimates.

Table IV. Effective Index for Different PN Order

Maximum PN =P3

PN Estimated Error True Error Effective Index

P1 → P3 3.12x10−00 3.13x10−00 0.997
P3 → P5 7.22x10−05 1.24x10−04 —

Maximum PN =P5

P1 → P3 3.12x10−00 3.26x10−00 0.957
P3 → P5 9.14x10−01 9.18x10−01 0.996
P5 → P7 6.53x10−05 1.80x10−04 —

3.3. Measure of Non-Zero Discretization Error for a Non-Smooth Solution

In the previous subsection, we verified the adaptivity algorithm for a relatively smooth solution in the
uniform region. However, for realistic applications the radiation transport problem often contains large
material discontinuities such as the helium-cladding interface in gas-cooled reactors, for example. Since
large material discontinuities lead to large flux gradients, spurious oscillations may ocurr in the computed
solution. Therefore, the region around the discontinuity must be resolved adequately in order to obtain an
accurate solution. In this subsection, we verified the applicability of the developed adaptivity for a system
with a large material discontinuity. The system consisted of a 5.0x2.0cm square region with the following
manufactured solution:

φ+(r,Ω) =
{
σt1(1− x) + 1 if x ≤ 1.0
e−σt2(x−1) if x > 1.0

(16)

where σt1,2 is the total cross section of the region 1 and 2, respectively. The material discontinuity in this
problem occured at x = 1.0cm. The relationship between the magnitude of discontinuity and the EI is
shown in Table V. In this test problem, the effective index ranged between 1.50-2.00 regardless of the
magnitude of discontinuity. The expected spurious oscillations were successfully suppressed due to the
adaptive refinement around the region of the material discontinuity,
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Table V. Effective Index for Non-Smooth, Discontinuous Interface Problem

σt2
σt1

Estimated Error True Error Effective Index

10 8.03x10−05 4.01x10−05 2.00
100 7.82x10−05 3.97x10−05 1.97

1000 7.78x10−05 5.03x10−05 1.55
10000 7.77x10−05 4.91x10−05 1.58

3.4. A Multigroup Problem

Lastly, we assessed how a multigroup problem affected the a posteriori error estimates. We considered a
10x10cm homogeneous, two-group problem with the following manufactured solutions:

φ+(r,Ω) =





∑N
l,even

∑l
m=0

1
2l (2 + cos[ (l+1)x

(y+1) ])Y e
l,m(Ω) for group 1

∑N
l,even

∑l
m=0

1
2l (2 + sin[ (l+1)x

(y+1) ])Y e
l,m(Ω) for group 2

(17)

A maximum number of the angular orders (N) was set to 4 (i.e. P5 approximation). Table VI lists the
corresponding cross sections for the problem. A relative tolerance of the problem was set to 1.0x10−3.

We first compared how the error reduced as a function of total number of nodes for both uniform and
adaptive refinement cases (Figure 4 ). From Figure 4, we observe that the adaptive mesh case required only
about 25% of number of nodes compared to the uniform refinement case. Figure 5 depicts the group 1 and
group 2 scalar flux profile and the final mesh produced by the adaptive mesh refinement. The adaptive
strategy successfully refined the mesh around the region where large flux gradients occurred.

Table VI. Material Cross Section of the Multigroup Problem

Group 1

σt σa σs11 σs12

1.0 0.5 0.3 0.2

Group 2

σt σa σs21 σs22

1.0 0.5 0.0 0.5
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Figure 4. Relative Error v.s. Number of Nodes (Scattering Ratio=0.8)
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Figure 5. Flux Profiles and Final Mesh of Multigroup Problem

Table VII shows how the EI changed with the number of nodes used in the calculation as well as the EI for
the angular error estimators. The spatial EI was computed by the sum of group 1 and 2 errors, while the
angular EI was obtained for each group. After the first two spatial iteration steps, the EI ranged between
4.25 and 5.27. The EI had become quite large compared to the one-group case (i.e. Table I). On the other
hand, the difference between true and estimated angular truncation errors was less than 5.0% for all the
cases presented.
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Table VII. Effective Index for Multigroup Problem

Spatial Error Estimates

Number of Nodes Estimated Error True Error Effective Index

13 3.18x10−1 3.00x10−1 10.61
41 1.08x10−1 1.39x10−1 7.77
82 2.69x10−1 5.10x10−1 5.27

152 5.78x10−1 1.36x10−1 4.25
459 2.00x10−1 4.22x10−1 4.74

1704 5.84x10−1 1.16x10−1 5.06

Angular Error Estimates
Maximum PN =P5 (Group1/Group2)

P1 → P3 3.12x10−00/3.11x10−00 3.26x10−00/3.26x10−00 0.959/0.950
P3 → P5 9.14x10−01/1.01x10−00 9.18x10−01/1.01x10−00 0.997/0.997
P5 → P7 6.89x10−04/7.03x10−04 1.65x10−03/1.76x10−03 —

4. CONCLUSIONS

In this work, the Method of Manufactured Solutions was employed to assess the validity of a posteriori
error indicators used for coupled space-angle adaptivity based on the second-order, even-parity transport
formulation. This formulation provides a natural framework for the application of the MMS as it allows a
simple treatment of the source term through the separation into parity components. Several different
numerical tests were performed within a unified framework, and the numerical results showed the
reliability of the residual-based a posteriori error estimators. As a general trend, we have observed that the
developed a posteriori error indicators closely follow the true error in the angle, while the spatial error
indicator somewhat overestimates the true error, and the error indicator is somewhat insensitive to the
magnitude of cross section, scattering ratio, and discontinuity.
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