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ABSTRACT

The family of nonlinear weighted flux methods for solving the transport equation is derived for
2D Cartesian geometry. A linear polynomial weight is considered. An asymptotic diffusion
limit analysis is performed on the discretized method. The analysis reveals conditions on the
weight necessary for an accurate approximation of the diffusion equation. As a result, we
developed a new weighted flux method, the equations of which give rise to the diffusion
equation in optically thick diffusive regions. Numerical results are presented to confirm the
theoretical results and demonstrate performance of the proposed method.
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1. INTRODUCTION

The nonlinear weighted flux (NWF) methods for solving the transport equation belong to a group of
nonlinear projective-iterative (NPI) methods. These are also known as projected discrete ordinates (PDO)
methods [1]. The NPI methods are defined by a system of nonlinearly coupled high-order and low-order
problems that is equivalent to the original linear transport problem. The equations of NPI methods are
closed by a defining of linear-fractional factors. These factors are weakly dependent on the angular flux.
NPI methods possess certain advantages for their use in multiphysics applications. NPI methods have some
flexibility in coupling, for instance, radiative transfer and hydrodynamics equations. For stability, the
low-order equations of these methods need not be discretized consistently with the spatial discretization of
the transport equation. Examples of NPI methods are the quasidiffusion (QD) method [2], flux methods
[3–5], α-weighted methods [6], nonlinear S2-like methods [7, 8] and others [1]. These methods differ from
each other by the definition of the low-order equations which results in differences in features of these
methods. In this paper, we derive new low-order equations of the flux methods such that the resulting
discretized NWF method has the desired properties of an accurate approximation of the diffusion equation
in the diffusion limit and fast convergence [9].

The low-order problem of the QD method is an elliptic one, i.e. the solution in any spatial point depends on
the solution in all other points. However, when particles stream without scattering in some direction, the
nature of the relationship of the solution amongst various spatial points is different and based on the
properties of the hyperbolic differential operator of the transport equation. The low-order equations of the
flux and α-weighted methods are formulated for the partial scalar fluxes and possess such a feature. The
flux methods have been used successfully, for instance, to solve electron transport problems with highly
anisotropic scattering and radiative transfer problems [10].
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In many cases, practical radiative transfer problems contain optically thick diffusive regions in which the
leading-order transport solution satisfies the diffusion equation. An asymptotic analysis has been
previously developed to assess a discretized method’s ability to reproduce the diffusion equation in
diffusive regions [9, 11, 12]. This analysis also determines the leading-order boundary condition for the
resulting diffusion equation for the case of numerically unresolved boundary layers of the diffusive region.
The structure of the flux method equations is similar to that of the transport equation. This asymptotic
analysis can be well utilized in the development of the NWF methods with these necessary properties.

Recently, a new parameterized family of NWF methods for the 1D slab geometry transport equation was
proposed [13]. The asymptotic diffusion analysis enabled us to determine a particular method of this
family the solution of which satisfies a good approximation of both the diffusion equation and asymptotic
boundary condition in the diffusive regions. Note that none of the α-weighted nonlinear methods possesses
this combination of properties. The convergence properties of this method are close to the properties of the
diffusion-synthetic acceleration (DSA) and QD methods.

In this paper, we consider the NWF methods for 2D Cartesian geometry and analyze them to derive a
method that possesses a combination of properties necessary for producing accurate numerical solutions of
multidimensional transport problems with diffusive regions. We present a NWF method derived with a
polynomial weight function whose leading-order solution reproduces an accurate discretization of the
diffusion equation in the diffusion limit. Numerical results are presented to illustrate the method’s
properties.

The remainder of this paper is organized as follows. The family of 2D NWF methods is formulated in Sec.
2. The discretization of the proposed methods is presented in Sec. 3. In Sec. 4, we describe the asymptotic
diffusion analysis of the NWF methods in continuous and discrete forms. In Sec. 5, the numerical results
are presented. We conclude, in Sec. 6, with a discussion on the developed methods.

2. FORMULATION OF THE FAMILY OF 2D NWF METHODS

Let us consider the one-group steady-state transport equation in 2D Cartesian geometry with isotropic
scattering and source:

Ωx
∂

∂x
ψ(~r, ~Ω) + Ωy

∂

∂y
ψ(~r, ~Ω) + σt(~r)ψ(~r, ~Ω) =

1
4π

σs(~r)
∫

4π
ψ(~r, ~Ω′)d~Ω′ +

1
4π

q(~r) , ~r ∈ D , (1)

ψ(~r, ~Ω)
∣∣∣
~r∈∂D = ψin(~rb, ~Ω) , ~Ω · ~n < 0 , ~rb ∈ ∂D , (2)

where D = {0 ≤ x ≤ X, 0 ≤ y ≤ Y }.

To derive the low-order equations of the NWF family of methods, we operate on the transport equation (1)
by γm

∫
ωm

w(Ωx, Ωy)(•)d~Ω over spherical angular quadrants ωm, m = 1, . . . , 4, where w(Ωx, Ωy) is a
weight function and

γm =

∫
ωm

d~Ω
∫
ωm

w(Ωx, Ωy)d~Ω
. (3)

The family of 2D NWF methods are then defined by the following high-order problem for the angular flux
ψ and low-order problem for the partial scalar fluxes φm =

∫
ωm

ψd~Ω:

Ωx
∂

∂x
ψ(k+1/2) + Ωy

∂

∂y
ψ(k+1/2) + σtψ

(k+1/2) =
1
4π

σsφ
(k) +

1
4π

q , (4)
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G(k+1/2)
m = γm

∫

ωm

w(Ωx, Ωy)ψ(k+1/2)d~Ω

/ ∫

ωm

ψ(k+1/2)d~Ω , (5)

Fα(k+1/2)

m = γm

∫

ωm

|Ωα|w(Ωx, Ωy)ψ(k+1/2)d~Ω

/ ∫

ωm

ψ(k+1/2)d~Ω , (6)

α = x, y , m = 1, . . . , 4 ,

∂

∂x
(F x(k+1/2)

1 φ
(k+1)
1 ) +

∂

∂y
(F y(k+1/2)

1 φ
(k+1)
1 ) + σtG

(k+1/2)
1 φ

(k+1)
1 =

1
4
(σsφ

(k+1) + q) , (7)

− ∂

∂x
(F x(k+1/2)

2 φ
(k+1)
2 ) +

∂

∂y
(F y(k+1/2)

2 φ
(k+1)
2 ) + σtG

(k+1/2)
2 φ

(k+1)
2 =

1
4
(σsφ

(k+1) + q) , (8)

− ∂

∂x
(F x(k+1/2)

3 φ
(k+1)
3 )− ∂

∂y
(F y(k+1/2)

3 φ
(k+1)
3 ) + σtG

(k+1/2)
3 φ

(k+1)
3 =

1
4
(σsφ

(k+1) + q) , (9)

∂

∂x
(F x(k+1/2)

4 φ
(k+1)
4 )− ∂

∂y
(F y(k+1/2)

4 φ
(k+1)
4 ) + σtG

(k+1/2)
4 φ

(k+1)
4 =

1
4
(σsφ

(k+1) + q) , (10)

0 ≤ x ≤ X, 0 ≤ y ≤ Y ,

φ(k+1) =
4∑

m=1

φ(k+1)
m , (11)

with the following boundary conditions for the low-order equations (7)-(11):

φ(k+1)
m

∣∣∣
x=0

=
∫

ωm

ψin
∣∣∣
x=0

d~Ω , m = 1, 4 , 0 ≤ y ≤ Y , (12)

φ(k+1)
m

∣∣∣
x=X

=
∫

ωm

ψin
∣∣∣
x=X

d~Ω , m = 2, 3 , 0 ≤ y ≤ Y , (13)

φ(k+1)
m

∣∣∣
y=0

=
∫

ωm

ψin
∣∣∣
y=0

d~Ω , m = 1, 2 , 0 ≤ x ≤ X , (14)

φ(k+1)
m

∣∣∣
y=Y

=
∫

ωm

ψin
∣∣∣
y=Y

d~Ω , m = 3, 4 , 0 ≤ x ≤ X . (15)

Standard notations are used. k is the iteration index.

The iterative process is defined by the following three stages:

1. A transport sweep to calculate the angular flux ψ(k+1/2) (Eq. (4)).

2. The calculation of the factors G
(k+1/2)
m and Fα(k+1/2)

m from ψ(k+1/2) (Eqs. (5)-(6)).

3. Solving the low-order problem (Eqs. (7)-(15)) for φ
(k+1)
m using G

(k+1/2)
m and Fα(k+1/2)

m .

On the first iteration (k = 0) the transport sweep is not performed. The factors G
(1/2)
m and Fα(1/2)

m are
calculated using an isotropic angular flux.
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3. DISCRETIZATION OF THE NWF METHODS

The structure of the operator of the low-order NWF equations has some features that make them similar to
the transport equation. This enables one to use transport differencing methods as a basis for development
of a discretization of the low-order NWF equations.

We consider orthogonal spatial grids

xi+1/2 = xi−1/2 + ∆xi, i = 1, . . . , Nx; x1/2 = 0, xNx+1/2 = X ,

yj+1/2 = yj−1/2 + ∆yj , j = 1, . . . , Ny; y1/2 = 0, yNy+1/2 = Y .

The low-order equations are discretized by the lumped bilinear-discontinuous (BLD) method [14, 15]. The
BLD approximation of the partial scalar fluxes in the (i, j)-cell is

φm(x, y) = φm,i,j +
2

∆xi
(x− xi)φx

m,i,j +
2

∆yj
(y − yj)φ

y
m,i,j +

4
∆xi∆yj

(x− xi)(y − yj)φ
xy
m,i,j , (16)

where xi and yj are midpoints of the corresponding intervals. The discretized low-order equations of the
NWF method are:

νx
m∆yj(F x

m,i+1/2,jφm,i+1/2,j−F x
m,i−1/2,jφm,i−1/2,j)+νy

m∆xi(F
y
m,i,j+1/2φm,i,j+1/2−F y

m,i,j−1/2φm,i,j−1/2)

+ σt,i,jGm,i,jφm,i,j∆xi∆yj =
1
4
∆xi∆yj(σs,i,jφi,j + qi,j) , (17)

θxνx
m∆yj(F x

m,i+1/2,jφm,i+1/2,j + F x
m,i−1/2,jφm,i−1/2,j − 2F x

m,i,jφm,i,j) + γyν
y
m∆xi(F

y
m,i,j+1/2φ

x
m,i,j+1/2

− F y
m,i,j−1/2φ

x
m,i,j−1/2) + σt,i,jGm,i,jφ

x
m,i,j∆xi∆yj =

1
4
∆xi∆yj(σs,i,jφ

x
i,j + qx

i,j) , (18)

γxνx
m∆yj(F x

m,i+1/2,jφ
y
m,i+1/2,j − F x

m,i−1/2,jφ
y
m,i−1/2,j) + θyν

y
m∆xi(F

y
m,i,j+1/2φm,i,j+1/2

+F y
m,i,j−1/2φm,i,j−1/2−2F y

m,i,jφm,i,j)+σt,i,jGm,i,jφ
y
m,i,j∆xi∆yj =

1
4
∆xi∆yj(σs,i,jφ

y
i,j + qy

i,j) , (19)

δxνx
m∆yj(F x

m,i+1/2,jφ
y
m,i+1/2,j + F x

m,i−1/2,jφ
y
m,i−1/2,j − 2F x

m,i,jφ
y
m,i,j) + δyν

y
m∆xi(F

y
m,i,j+1/2φ

x
m,i,j+1/2

+F y
m,i,j−1/2φ

x
m,i,j−1/2−2F y

m,i,jφ
x
m,i,j)+σt,i,jGm,i,jφ

xy
m,i,j∆xi∆yj =

1
4
∆xi∆yj(σs,i,jφ

xy
i,j +qxy

i,j ) , (20)

i = 1, . . . , Nx , j = 1, . . . , Ny m = 1, . . . , 4 ,

where

νx
1 = νx

4 = 1 , νx
2 = νx

3 = −1 , (21)

νy
1 = νy

2 = 1 , νy
3 = νy

4 = −1 . (22)

The BLD auxiliary equations are given by

φ1,i+1/2,j = φ1,i,j + φx
1,i,j , φ3,i−1/2,j = φ3,i,j − φx

3,i,j ,

φy
1,i+1/2,j = φy

1,i,j + φxy
1,i,j , φy

3,i−1/2,j = φy
3,i,j − φxy

3,i,j ,

φ1,i,j+1/2 = φ1,i,j + φy
1,i,j , φ3,i,j−1/2 = φ3,i,j − φy

3,i,j ,

φx
1,i,j+1/2 = φx

1,i,j + φxy
1,i,j , φx

3,i,j−1/2 = φx
3,i,j − φxy

3,i,j ,

φ2,i−1/2,j = φ2,i,j − φx
2,i,j , φ4,i+1/2,j = φ4,i,j + φx

4,i,j ,

φy
2,i−1/2,j = φy

2,i,j − φxy
2,i,j , φy

4,i+1/2,j = φy
4,i,j + φxy

4,i,j ,

φ2,i,j+1/2 = φ2,i,j + φy
2,i,j , φ4,i,j−1/2 = φ4,i,j − φy

4,i,j ,

φx
2,i,j+1/2 = φx

2,i,j + φxy
2,i,j , φx

4,i,j−1/2 = φx
4,i,j − φxy

4,i,j . (23)
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Lumping parameters are denoted by θα, γα, and δα (α = x, y). The standard BLD equations are obtained
by setting the lumping parameters to 3, 1, and 3, respectively. For mass-lumped BLD, the parameters
become 1, 1/3, and 1/3. For fully lumped BLD, the parameters all have values of 1.

The transport equation is approximated by the method of short characteristics [16–18], from which the
factors are calculated on vertices. Cell-average factors, Fα

m,i,j and Gm,i,j , are calculated as averages of
factors evaluated on the four cell vertices. Face-average factors, Fα

m,i+1/2,j and Fα
m,i,j+1/2, are averages of

the two nearest vertex values.

4. ANALYSIS OF ASYMPTOTIC DIFFUSION LIMIT

4.1 NWF Methods in Continuous Form

To meet the diffusion limit, the leading-order solution of the low-order equations (7)-(10) must give rise to
the diffusion equation [11, 12]. In order to develop a NWF method that satisfies this condition, we perform
an asymptotic diffusion limit analysis of the low-order equations of the NWF methods for general weight
w(Ωx, Ωy) under the assumption that the angular flux is isotropic. Then, the factors are

Gm = 1 , Fα
m = F̃α

m , α = x, y , m = 1, . . . , 4 ,

where

F̃α
m = γm

∫

ωm

|Ωα|w(Ωx, Ωy)d~Ω

/ ∫

ωm

d~Ω . (24)

The analysis shows that the leading-order solution of the low-order equations (7)-(10) satisfies the
following second-order PDE in the interior of the optically thick diffusive region:

−1
4

(
4∑

m=1

(F̃ x
m)2

)
∂

∂x

1
σt

∂φ[0]

∂x
− 1

4

(
4∑

m=1

(F̃ y
m)2

)
∂

∂y

1
σt

∂φ[0]

∂y

− 1
4

(
F̃ x

1 F̃ y
1 − F̃ x

2 F̃ y
2 + F̃ x

3 F̃ y
3 − F̃ x

4 F̃ y
4

) (
∂

∂x

1
σt

∂φ[0]

∂y
+

∂

∂y

1
σt

∂φ[0]

∂x

)

+
1
4

(
F̃ x

1 + F̃ x
4 −

3∑

m=2

F̃ x
m

)
∂φ[1]

∂x
+

1
4

(
2∑

m=1

F̃ y
m −

4∑

m=3

F̃ y
m

)
∂φ[1]

∂y
+ σaφ

[0] = q . (25)

The equation (25) results in the diffusion equation and hence the leading-order solution satisfies the
diffusion equation, if the following five conditions are met:

1
4

4∑

m=1

(F̃ x
m)2 =

1
3

, (26)

1
4

4∑

m=1

(F̃ y
m)2 =

1
3

, (27)

F̃ x
1 F̃ y

1 − F̃ x
2 F̃ y

2 + F̃ x
3 F̃ y

3 − F̃ x
4 F̃ y

4 = 0 , (28)

F̃ x
1 + F̃ x

4 −
3∑

m=2

F̃ x
m = 0 , (29)
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2∑

m=1

F̃ y
m −

4∑

m=3

F̃ y
m = 0 . (30)

The results of this analysis allow an evaluation of NWF methods with various weights. Note that if a
weight satisfies only Eqs. (28)-(30), then Eq. (25) leads to a diffusion-like equation with a wrong diffusion
coefficient, D.

Let us consider methods with a general linear weight function of directional cosines

w(Ωx, Ωy) = 1 + βx|Ωx|+ βy|Ωy| . (31)

For the weight (31) and specified above ranges for the partial fluxes (i.e. ωm), we get

F̃α
m = F̃ , m = 1, . . . , 4 , (32)

where

F̃ =
1
2 + 1

3(βx + 2
πβy)

1 + 1
2(βx + βy)

. (33)

Note that the use of a general constant term in (31) will not result in a different NWF method.

The above five requirements (26)-(30) are met if the following two conditions on the weight (31) are true:

βx = βy = β , (34)

where

β =
π
√

3(
√

3− 2)
2(π(

√
3− 1)− 2)

≈ −2.43 . (35)

The weight (31) and parameter β determine a specific method within the family of NWF methods for
which the low-order equations lead to the correct diffusion equation in the diffusion limit provided that the
factors are calculated with an isotropic angular flux. The low-order equations of methods with w = 1,
w = |Ωx|+ |Ωy|, and w = 1 + |Ωx|+ |Ωy| give rise to a diffusion-like equation, but with a wrong
diffusion coefficient. The values of the diffusion coefficients for these methods are shown in Table I.

Table I. Values of the Diffusion Coefficients (D) for Specific NWF Methods

Weight w = 1 w=|Ωx|+|Ωy| w=1+|Ωx|+|Ωy| w=1+β(|Ωx|+|Ωy|)
D 1

4σt
(π+2

3π )2 1
σt
≈ 1

3.36σt
(4+5π

12π )2 1
σt
≈ 1

3.66σt

1
3σt

4.2 NWF Methods in Discretized Form

We now perform an asymptotic diffusion limit analysis of the NWF methods approximated by means of the
discretization described above (see Sec. 3) on a uniform rectangular spatial grid. The analysis showed that
the equation for the leading-order solution can be reduced to a diffusion-like equation provided that in the
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cells at the interior of the interfaces of the thick diffusive regions, cell-average factors and downstream
face-average factors are defined by the corresponding downstream vertex value, namely, given by:

G1,i,j = G1,i+1/2,j+1/2 ,

G2,i,j = G2,i−1/2,j+1/2 ,

G3,i,j = G3,i−1/2,j−1/2 ,

G4,i,j = G4,i+1/2,j−1/2 , (36)

Fα
1,i,j = Fα

1,i+1/2,j = Fα
1,i,j+1/2 = Fα

1,i+1/2,j+1/2 ,

Fα
2,i,j = Fα

2,i−1/2,j = Fα
2,i,j+1/2 = Fα

2,i−1/2,j+1/2 ,

Fα
3,i,j = Fα

3,i−1/2,j = Fα
3,i,j−1/2 = Fα

3,i−1/2,j−1/2 ,

Fα
4,i,j = Fα

4,i+1/2,j = Fα
4,i,j−1/2 = Fα

4,i+1/2,j−1/2 . (37)

If these conditions are met, then the low-order NWF equations discretized by the BLD method lead to the
same discrete equation for the leading-order solution as the BLD discretization of the transport equation
[12]. However, the resulting discretized diffusion equation has the diffusion coefficient

D =
F̃ 2

σt
, (38)

and hence in general it is not a correct one. In case of the weight w(Ωx,Ωy) = 1 + β(|Ωx|+ |Ωy|) , we
have F̃ 2 = 1

3 and obtain the right diffusion coefficient.

We now analyze the behavior of the discretized NWF methods in the presence of a boundary layer that is
not resolved by the spatial grid. The asymptotic analysis of the boundary-layer solution of the transport
equation in the differential form showed that the leading-order scalar flux meets the following boundary
condition [20]:

φ[0](X, y) = 2
∫

~n·~Ω<0
W (|~n · ~Ω|)ψin(X, y, ~Ω)d~Ω , (39)

W (µ) =
√

3
2

µH(µ) ≈ 0.956µ + 1.565µ2 , (40)

where H(µ) is the Chandrasekhar H-function for a purely scattering medium.

Let us consider the boundary condition at x = X , where ~n = ~ex. The analysis of the discretized NWF
methods revealed that on the boundary of an optically thick diffusive region the leading-order scalar flux is
defined by

φ
[0]
Nx,j =

2π
∑

~n·~Ωm<0

[w(|Ωx,m|, |Ωy,m|)|Ωx,m|] ψin(~Ωm)ζm

∑
m∈ω1

w(|Ωx,m|, |Ωy,m|)|Ωx,m|ζm

, (41)

where ζm are quadrature weights. The equation (41) approximates the following boundary relationship in a
continuous form:

φ[0](X, y) = 2
∫

~n·~Ω<0
W̃ (|Ωx|, |Ωy|)ψin(X, y, ~Ω)d~Ω , (42)

where

W̃ (|Ωx|, |Ωy|) =
πw(|Ωx|, |Ωy|)|Ωx|∫

ω1
w(|Ωx|, |Ωy|)|Ωx|d~Ω

. (43)
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The asymptotic analysis of other boundaries, for instance at y = 0, results in a similar expression.

We now examine the resulting weight function in the boundary condition, W̃ (|Ωx|, |Ωy|), for various NWF
methods. For the NWF method with w(Ωx,Ωy) = 1 (the first flux method), we get

W̃ (|Ωx|) = 2|Ωx| . (44)

For the case w(Ωx, Ωy) = |Ωx|+ |Ωy| , the boundary weight function is

W̃ (|Ωx|, |Ωy|) =
3π

2 + π
[|Ωx|2 + |Ωy||Ωx|]

≈ 1.833[|Ωx|2 + |Ωy||Ωx|] . (45)

The weight w(Ωx, Ωy) = 1 + |Ωx|+ |Ωy| results in the boundary weight function

W̃ (|Ωx|, |Ωy|) =
6π

5π + 4
[|Ωx|+ |Ωx|2 + |Ωy||Ωx|]

≈ 0.956[|Ωx|+ |Ωx|2 + |Ωy||Ωx|] . (46)

If w(Ωx, Ωy) = 1 + β (|Ωx|+ |Ωy|) , we have

W̃ (|Ωx|, |Ωy|) =
[
1
2

+ β(
2 + π

3π
)
]−1 (

|Ωx|+ β|Ωx|2 + β|Ωy||Ωx|
)

≈ −1.209|Ωx|+ 2.942|Ωx|2 + 2.942|Ωy||Ωx| . (47)

The transport equation’s boundary weight function (40) depends only on µ = |~n · ~Ω|, which for the
boundary considered is |Ωx|. Note that the resulting boundary weight functions for the considered weights,
w(Ωx, Ωy), each differ from the polynomial approximation of W (µ). Higher order polynomial weights
may be considered, but they are not necessary to produce the asymptotic diffusion equation and will
introduce third-order and higher terms into the asymptotic boundary condition that do not exist in the
analytic result of the transport equation. The following section presents numerical results that enable one to
compare and analyze the properties of different NWF methods.

5. NUMERICAL RESULTS

We present numerical results of two test problems to demonstrate the performance of the proposed 2D
NWF method with weight w(Ωx,Ωy) = 1 + β(|Ωx|+ |Ωy|). The first problem is designed to test the
diffusion limit performance of the method in the interior of a diffusive region. The second problem
investigates both the diffusion limit and the boundary condition properties of the method. We also show the
results for the NWF methods with weights w(Ωx, Ωy) = 1, w(Ωx, Ωy) = |Ωx|+ |Ωy| and
w(Ωx, Ωy) = 1 + |Ωx|+ |Ωy|.

Note that the factors in the NWF methods involve integration over individual quadrants of the angular flux
multiplied by polynomials of directional cosines. Taking into account this fact, we use Gauss-type
quadratures [19], namely, the compatible quadruple-range quadrature with an equal number of azimuthal
angles on each polar cone.
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Problem 1

We consider a unit square having σt = 1/ε, σa = ε, and q = ε for ε = 10−2, 10−3, 10−4, 10−5 [12]. Note
that as ε → 0 the domain becomes more and more diffusive. A uniform spatial mesh of 19x19 equal cells
is used with vacuum boundary conditions. The angular discretization is 9 directions per octant, 3 per polar
level. A relative pointwise convergence criterion of 10−8 is used.

Tables II and III show measures of the error of the NWF methods’ solutions in Problem 1 as compared to
the fine-mesh numerical solution obtained by the QD method. Note that the low-order equations of the QD
method give rise to the diffusion equation in diffusive regions. The low-order QD equations are discretized
by means of a finite-volume method of second-order accuracy. The QD solution accurately reproduces the
solution of this problem. Relative errors of the cell-average scalar flux in the cell located at the center of the
domain are listed in Table II. The relative errors of the solution in the L2-norm are shown in Table III.
These results demonstrate that the NWF method with the weight w(Ωx,Ωy) = 1 + β(|Ωx|+ |Ωy|)
reproduces the maximum of the solution with small errors, especially in case of extremely diffusive
regions. The proposed method also has the smallest relative errors in the L2 norm. Larger errors of the
NWF method with other weights w(Ωx,Ωy) are explained by the fact that the equations of these methods
lead to the diffusion equation with a wrong diffusion coefficient (Eq.(38) and Table I) in the interior of
diffusive regions.

Problem 2

We consider a boundary layer problem 0 ≤ x, y ≤ 11 having σt = σa = 2, ∆x = 0.1, and q = 0 from
0 ≤ x ≤ 1 and σt = σs = 100, ∆x = 1, and q = 0 from 1 ≤ x ≤ 11 (∆y = 1 everywhere). There is an
isotropic incoming angular flux with magnitude 1

2π on the left boundary and vacuum on the rest. The
angular quadrature set and convergence criterion are the same as in Problem 1. This problem tests a
method’s ability to reproduce an accurate diffusion solution in the interior of a diffusive region with a
spatially unresolved boundary layer.

Figure 1 shows the overall performance of the methods in an unresolved boundary layer problem. The
scalar flux from the low-order problem along the middle of the spatial domain at y = 5.5 is plotted where
the cell-average values are displayed in solid and the face-average values are in outline form. The red curve
represents the fine-mesh solution obtained by the QD method. Figure 2 demonstrates the absolute value of
the relative errors of the low-order scalar flux with respect to the fine mesh solution. Note that at the right
boundary (x=11) the solution is very small (φ = 3.724×10−5). It results in an increase of the relative error
at x=11. The presented results show that the NWF method with the smallest errors in the diffusive region
with highly anisotropic angular flux coming from the purely absorbing region is the method with the
weight w = 1 + β(|Ωx|+ |Ωy|).

6. CONCLUSIONS

A parameterized family of nonlinear weighted flux methods for solving particle transport problems in 2D
Cartesian geometry has been considered. The properties of these methods for transport problems with
isotropic scattering have been analyzed in differential and discretized form. Independent schemes to
discretize the low-order and high-order (transport) equations are used. The performed analysis revealed a
method with a particular linear weight function the low-order equations of which lead to the diffusion
equation in the asymptotic diffusion limit. The resulting low-order NWF equations are discretized with the
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Table II. Problem 1: Relative Errors of the Cell-Average Scalar Flux in the Cell Located at the Center
of the Domain

Weight w = 1 w=|Ωx|+|Ωy| w=1+|Ωx|+|Ωy| w=1+β(|Ωx|+|Ωy|)
ε = 10−2 2.57E-1 1.02E-1 1.76E-1 8.49E-3

ε = 10−3 2.70E-1 9.97E-2 1.81E-1 -7.98E-4

ε = 10−4 2.71E-1 1.00E-1 1.81E-1 -6.02E-4

ε = 10−5 2.71E-1 1.00E-1 1.81E-1 -5.81E-4

Table III. Problem 1: Relative Errors of the Scalar Flux in L2 Norm

Weight w = 1 w=|Ωx|+|Ωy| w=1+|Ωx|+|Ωy| w=1+β(|Ωx|+|Ωy|)
ε = 10−2 2.32E-1 8.56E-2 1.55E-1 1.81E-2

ε = 10−3 2.54E-1 8.82E-2 1.67E-1 1.96E-2

ε = 10−4 2.56E-1 8.90E-2 1.68E-1 1.99E-2

ε = 10−5 2.56E-1 8.91E-2 1.68E-1 1.99E-2

lumped BLD method. The convergence rates of the proposed iterative method are similar to those of the
QD and DSA methods. We now work on further analysis and development of the NWF methods.

The proposed NWF method that meets the diffusion limit can be used for developing approximate
mathematical models for radiative transfer and particle transport that are similar to the Variable Eddington
Factor (VEF) approach [21]. The VEF methods are based on a set of low-order equations for moments of
the angular flux and some apriori closure relationships, for instance, Levermore-Pomraning or Minerbo
closures [22, 23]. For some class of transport problems, these approximate models can be more accurate
than the flux-limited diffusion model or P1 theory. The low-order NWF equations can be used in
combination with, for example, Minerbo closure to derive a model with new features. This area of
application of the NWF methods in 1D and 2D requires further studies.
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Figure 1. Problem 2: Cell Average and Cell Face Total Low-Order Scalar Flux.

Figure 2. Problem 2: Absolute Value of Relative Errors of the Scalar Flux versus QD Fine Mesh
Solution of Figure 1.
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