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ABSTRACT

This paper describes a new Non-Linear Discontinuous Petrov-Galerkin (NDPG) method and
application to the one-speed Boltzmann Transport Equation (BTE) for space-time problems. The
purpose of the method is to remove unwanted oscillations in the transport solution which occur in
the vicinity of sharp flux gradients, while improving computational efficiency and numerical
accuracy. This is achieved by applying artificial dissipation in the solution gradient direction,
internal to an element using a novel finite element (FE) Riemann approach. The amount of
dissipation added acts internal to each element. This is done using a gradient-informed scaling of
the advection velocities in the stabilisation term. This makes the method in its most general form
non-linear. The method is designed to be independent of angular expansion framework. This is
demonstrated for the both discrete ordinates (SN ) and spherical harmonics (PN ) descriptions of the
angular variable. Results show the scheme performs consistently well in demanding time
dependent and multi-dimensional radiation transport problems.

Key Words: SUPG, Radiation Transport, Discontinuous Galerkin, Disctrete Ordinates, Spherical
Harmonics

1. INTRODUCTION

The Discontinuous Galerkin (DG) method has received a great deal of attention in modern
transport applications. First proposed for computational neutron transport in 1973 by Reed and
Hill [1], the DG method has become extremely popular for spatial, temporal, and space-time
discretisations of the Boltzmann Transport Equation (BTE). Continuity of solution is not
enforced, allowing the capture of sharp flux gradients such as those occurring in the vicinity of
dissimilar materials. Although adequate for a broad range of applications, the DG method does
however, suffer defects. In certain cases, the discontinuities can result in unwanted oscillations
being introduced in the transport solution. This has motivated the use of stabilisation strategies
such as Petrov-Galerkin (PG) and Streamline Upwind Petrov-Galerkin (SUPG) methods in
radiation transport applications [5, 6]. First introduced by Brooks and Hughes in 1982 for
improved shock handling in high speed flows [2, 13–16], these methods improve the smoothness
and capture of discontinuities by adding onto the discretisation an upwind term for numerical
stability, typically in the streamline direction.



S. R. Merton et al

One notable deficiency of the conventional linear upwind approach is that the same amount of
artificial dissipation is introduced everywhere throughout the domain, although various
approaches have been suggested that optimise it in some sense [4, 7]. These so-called ”optimal”
methods are also deficient in that they are based on one length scale chosen to represent the entire
domain. For example, the time step may provide a suitable length scale at early times while there
is transient behaviour, but becomes unsuitable as steady-state is reached, at which point the
element width would be a better choice. However, the element width would not be appropriate at
early time where temporal modes dominate the solution field. This can be addressed by
introducing non-linearity, using the gradient of the solution to determine a dissipation that is most
appropriate locally. Additionally, there are problems where unwanted oscillations occur in the
gradient directions. In such cases, applying artificial dissipation only along the streamline
direction may not stabilise the solution. It should be applied in the gradient direction, requiring
knowledge of the solution thereby making the scheme non-linear. Methods have been developed
that scale the magnitude of the dissipation so it is made optimal in the direction of the gradient,
using the cosine of the angle between the streamline and gradient vectors[9]. A potential
limitation of this approach arises when the gradient is perpendicular to the streamline, as this
results in the dissipation being scaled out completely. The non-linear discontinuous Galerkin
(NDPG) method proposed in the current paper uses gradient-informed advection velocities in the
stabilisation term such that all dissipation acts in the gradient direction only. Artificial dissipation
in this direction is then added internal to an element via a novel finite element Riemann approach.
Using a Riemann approach makes the new method independent of angular discretisation scheme.
The NDPG method can of course be combined with a conventional linear SUPG formulation to
stabilise the solution across all radiation regimes.
The paper has been arranged as follows. In section 2 the time dependent linear form of the
one-speed Boltzmann Transport Equation (BTE) is introduced and discretised using linear
discontinuous finite elements, on both the spatial and temporal grids. No assumption is made
regarding the angular scheme; a key feature of this work is that it is independent of the choice of
basis function describing direction of particle travel. Consequently, the methods described in this
paper operate for arbitrary discretisation in angle. Galerkin weighting is used for both the spatial
and temporal projections. A space-time Riemann approach to implementing the boundary
conditions is introduced in section 3. This decouples the flow across the element boundaries into
a set of independent one dimensional waves, making the scheme independent of the angular
discretisation used. In section 4 a linear method is discussed. This uses a fixed length scale, a
property that is not entirely satisfactory as it results in the same type of dissipation being applied
everywhere throughout the domain. Section 5 introduces non-linearity allowing the type of
dissipation to be defined differently at each node according to local behaviour of the solution.
Numerical results are presented and discussed in section 6. The non-linear scheme is
demonstrated on a series of demanding radiation transport test problem that include time
dependent and steady-state cases. This is done for discrete ordinates and spherical harmonics on
the sphere. Conclusions are drawn in section 7.

2. SPACE-TIME DISCRETISATION OF THE BOLTZMANN EQUATION

Numerical solutions to the time dependent form of the Boltzmann equation are of great
importance in a variety of neutron transport and radiation-hydrodynamics computational
problems. Applications range from representing the transient behaviour of reactors and the time
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dependent simulation of delayed neutron physics to the modelling of fissile solutions. Temporal
discretisation technologies have become as sophisticated as schemes once only considered for
spatial domains. The DG method, in particular, is becoming an increasingly popular choice for
space-time differencing of the BTE [3]. This allows capture of radiation fields that are exremely
poorly behaved. The work in the current paper uses the linear discontinuous Galerkin method on
both the spatial and temporal grids, treating time as just another dimension over which the
transport takes place. In the case of two spatial dimensions, the resulting element has the same
number of unknowns representing the space-time variation as there are in a three-dimensional
element of the same polyhedral type and order. This allows the solution to be discontinuous on
both the spatial and temporal boundaries of the element. The time dependent, linear form of the
one-speed BTE may be written as

(
1

vg

∂

∂t
+ Ω · ∇+ σt(r,Ω))ψ(r,Ω) = q(r,Ω) (1)

where vg refers to the group velocity of the neutrons, ψ(r,Ω) is the angular flux at position r
travelling along direction Ω in the continuum, to which computational solutions are required.
σt(r,Ω) is the scattering-removal cross-section. This describes losses to the host media, and
scattering of the particles in angle of transport. It is common practice in radiation transport
literature to make the assumption that the scattering-removal cross-section is time independent. In
general this will not be the case, and material properties can vary significantly with time for
example if effects such as burn-up are included in the simulation. This requires the
scattering-removal cross-section to vary in space-time. In the present work, it is assumed that
σt(r,Ω) is constant with respect to time. q(r,Ω) is the sum of all sources driving the system
which may include fission, out of group scattering and imposed body sources. In general, these
vary in time also. In the current work, scattering is assumed to be isotropic. The inclusion of
anisotropy on the scattering term is a straightforward extension to the present work. One may
write σt(r,Ω) = σa(r) + σs(r,Ω→ Ω

′
) where σa(r) defines the absorption cross-section and

σs(r,Ω→ Ω
′
) the cross-section of a particle initially travelling in direction Ω scattered into

direction Ω
′ . The angular flux emission due to such scattering events results in an extra source

term. The scattering kernel σs(r,Ω→ Ω
′
) is then expanded in Legendre polynomials to represent

the angular distribution independently of the approximation used to represent the angular flux
itself. The direction Ω is a vector that defines a point on the surface of the unit sphere, and maybe
expressed in terms of Cartesian components (Ωx,Ωy,Ωz)

T . This represents all directions of
particle travel inside the unit sphere. In order to solve Eq. 1 on a computational mesh to obtain
numerical approximations to ψ(r,Ω), the angular flux must be discretised in space, time and
angle. It is usual to perform the angular discretisation first, followed by the spatial and temporal
differencing. This results in a symmetric system of coupled hyperbolic equations. One first
obtains the angular discrete form of the equation by selecting an appropriate set of basis functions
in direction of particle travel. The angular discrete form may be written

(A · ∇+ H(r))Ψ(r)− S(r) = 0 (2)

in which A is a vector of space-time invariant angular Jacobian matrices (At,Ax,Ay,Az)
T , and

H(r) the angular discretised scattering removal matrix operator at position r in space-time. Ψ(r)
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is the angular discrete flux at position r in space-time. This comprises a vector ofM unknowns at
position r in space-time, i.e. Ψ(r) = (Ψ1(r), ...,ΨM(r))T. Therefore H(r) is a rank-2 matrix of
dimensionM. S(r) is the angular discrete source vector at position r in the space-time domain,
i.e. S(r) = (s1(r), ..., sM(r))T. Note that Eq. 2 is independent of angular scheme. One may use
discrete ordinate (SN ), spherical harmonic (PN ) or wavelet (LWN ) methods without having to
alter Eq. 2. Consequently, the work that follows is completely general and not specific to any
particular deterministic method. Once the angular part is complete, one is in a position to perform
the spatial and temporal discretisation. A suitable set of nodal basis functions N(r) are chosen,
where Ni(r) is a diagonalM×M matrix with the node i basis function along the main diagonal.
Eq. 2 is multiplied through by Ni(r) and integrated by parts over the element domain Ve (the
boundary of Ve is Γe). Integration by parts produces a surface integral that couples the elements
across the spatial and temporal meshes. One then substitutes Ψ(r) =

∑
j Nj(r)φj and

S(r) =
∑

j Nj(r)sj to obtain the discrete system of equations

∫
Ve

(−A · ∇Ni(r)
∑
j

Nj(r)Ψj + Ni(r)H
∑
j

Nj(r)Ψj −Ni(r)
∑
j

Nj(r)sj)dV + (3)∫
Γein

n ·ANi(r)ΨINdΓ +

∫
Γeout

n ·ANi(r)ΨdΓ = 0

Thus each node pair i, j has a matrix block of sizeM×M associated with it,M being the
number of unknowns on the sphere. The solution at node i is a vector of lengthM containing the
moments of the flux at that point in space-time. ΨIN is the boundary condition coming in from
either a neighbouring element or the edge of the domain, and 0 a vector of lengthM containing
zeroes. Note that when integration by parts is applied to the advection terms, the troublesome
derivatives on the element boundaries are removed in addition to creating the surface integral that
contains the boundary conditions. In Eq. 4 this surface term has been split into an inbound
contribution ΓeIN and an outbound contribution ΓeOUT . This approach fully upwinds the solution
on the incoming boundaries of the element on the spatial and temporal grids of the solution
domain.

3. SPACE-TIME BOUNDARY CONDITIONS

Space-time boundary conditions are implemented via a finite element Riemann approach. This
involves examining the eigenstructure of the Jacobian matrices Ax,Ay,Az and At in order to
decouple outbound information from inbound information. These eigenstructures are obtained by
taking the Riemann decompostion of each angular Jacobian, giving the matrices of left and right
eigenvectors and the diagonal matrix of eigenvalues, for each. That is to use

Ax = LxΛxRx, Ay = LyΛyRy, Az = LzΛzRz, At = LtΛtRt (4)

where Lx,Ly,Lz,Lt are the matrices of left eigenvectors, Rx,Ry,Rz,Rt the matrices of right
eigenvectors and Λx,Λy,Λz,Λt the diagonal matrices of eigenvalues associated with the
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Riemann decompostion of Ax,Ay,Az,At respectively. Positive eigenvalues correspond with
outbound information on the element boundaries and negative eigenvalues correspond with
incoming information. Once the eigenstructures are obtained, the components of each eigenvalue
matrix Λx,Λy,Λz,Λt are sorted by sign in the Riemann space where they are diagonal. This
involves constructing two diagonal sorting matrices for each axis to decouple the directions into
separate inbound and outbound modes

Λ+
xii

=

{
Λxii Λxii · nx ≥ 0;

0 Λxii · nx < 0.
, Λ−xii =

{
Λxii Λxii · nx < 0;

0 Λxii · nx ≥ 0.

Λ+
yii

=

{
Λyii Λyii · ny ≥ 0;

0 Λyii · ny < 0.
, Λ−yii =

{
Λyii Λyii · ny < 0;

0 Λyii · ny ≥ 0.

Λ+
zii

=

{
Λzii Λzii · nz ≥ 0;

0 Λzii · nz < 0.
, Λ−zii =

{
Λzii Λzii · nz < 0;

0 Λzii · nz ≥ 0.

Λ+
tii

=

{
Λtii Λtii · nt ≥ 0;

0 Λtii · nt < 0.
, Λ−tii =

{
Λtii Λtii · nt < 0;

0 Λtii · nt ≥ 0.

where nx, ny, nz and nt define the outward unit normal to an element face for direction x, y, z and
t respectively. For orthogonal quadrilateral elements, nx = −1 for faces whose outward normal
points anti-parallel to the x-axis, and nx = +1 for faces whose outward normal points parallel to
the x-axis, and likwise for the other axes. The Riemann approach allows each axis to be treated as
an independent eigenvalue problem. Once formed, the sorting matrices are mapped back in the
associative transforms

A+
x = LxΛ

+
x Rx (5)

A−x = LxΛ
−
x Rx (6)

A+
y = LyΛ

+
y Ry (7)

A−y = LyΛ
−
y Ry (8)

A+
z = LzΛ

+
z Rz (9)

A−z = LzΛ
−
z Rz (10)
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A+
x is placed in the outbound surface integral. This integral is placed on the l.h.s of the matrix

equation and is absorbed into the solution. A−x is placed in the inbound surface integral that
contains the element boundary conditions. This integral is placed on the r.h.s. of the matrix
equation. The matrices A+

y , A−y , A+
z , A−z , A+

t and A−t are treated similarly.

4. OPTIMAL LINEAR METHODS

In many demanding transport applications it is necessary to capture sharp gradients in the
solution, for example in the vicinity of material boundaries. The discontinuous Galerkin method
allows this to some extent by not enforcing continuity of solution at the element boundaries.
Although this is adequate for many types of radiation transport problem, there are cases when it
produces unwanted oscillation. It is possible to suppress this behaviour by adding on to the
discretisation an upwind term for gradient control and numerical stability. This results in a
discontinuous Petrov-Galerkin (DPG) formulation that improves robustness of the transport
solution while retaining the accuracy. The general form of the angular discretised equation with
this modification may be written in conservative form

(I−∇ ·AP)R = 0 (11)

in which P is an angular stabilisation matrix and R the residual of the governing equation. The
choice of P determines the type of PG scheme. In general, P is a function of A and many choices
are to be found in the literature. Popular examples are the full Riemann SUPG method and Even
Power SUPG method such as that used in the finite element code RADIANT [5, 6, 8]. Dissipation
is added internal to an element, and the amount that is added can be optimised in various ways to
avoid adding in too much diffusion. This is important, as excessive artifical diffusion can heavily
reduce accuracy and convergence of the scheme. An example of an optimal method has been
published in [7] in which the finite element solution matches the exact solution at each outlet
node in one spatial dimension. This is achieved by scaling the amount of dissipation added
internal to an element with a parameter α calculated from the cross-section. Similar work was
later published in [4] with development of an optimal method for multi-dimensional systems,
where an exact solution was not available. This method works by deriving a one-dimensional
system along the streamline direction. That is to use As = n∗ ·A in which n∗ is defined as a face
normal would be defined in a control volume method, i.e. n∗ = ∇Ni

|∇Ni| where Ni is the node i basis
function. One may use an appropriate Riemann decomposition of As. That is to use
As = RsΛsLs where Rs and Ls are the left and right eigenvectors of As and Λs the diagonal
matrix of eigenvalues associated with the Riemann decomposition of As. This allows the
derivation of a set of one-dimensional waves. One can then write

Λs
∂Ψs

∂s
+ HsΨs = 0 (12)

which has analytical solutions, where Hs = LsHRs is the scattering removal operator mapped
into the appropriate Riemann space. One-dimensional optimal methods such as those in [7] may
then be applied in this space. In [4], a stabilisation matrix P was defined based on these
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one-dimensional considerations in order to remove oscillations from the multi-dimensional
solution. In this method, the artificial dissipation is added internal to an element. This choice of P
has the form

P = RsΛ
−1
s GTRGΛαLGGΛ−1

s Ls (13)

in which GTG = Hs is the Cholesky factorisation of Hs. One forms the matrix
AG = G−TΛsG

−1, using the Cholesky factors of Hs. This has the eigenvalue decomposition
AG = RGΛGLG, where RG and LG are the matrices containing the right and left eignevectors
respectively, and ΛG the diagonal matrix of eigenvalues of AG. The diagonal matrix Λα is formed
by placing the optimal coefficient α for direction i at position i on the main diagonal. That is to
use

Λαµν =

{
h|ΛGµν |α(σ̂) µ = ν;

0 µ 6= ν.

where the optimal coefficient is defined as

α =
(6 + 4σ̂ + σ̂2)e−σ̂ + 2σ̂ − 6

(12− 6σ̂)− (12 + 6σ̂)e−σ̂
(14)

Thus the dimensionless cross-section for the set of one-dimensional waves is given by σ̂ = σh
|ΛG|

.
Inserting the Cholesky factorisation into the angular discretisation ensures that Eq. 12 is diagonal;
note that without this approach, the system would not be diagonal in situations where Hs is not
diagonal, for example wavelet methods [17]. The Cholesky factorisation of Hs makes the
resulting stabilisation scheme work for arbitrary angular discretisation. It is found that α assumes
a value of 0.25 in voids and tends to this value also in optically thick cases. This is discussed in
more detail in section 5.1.
Artificial dissipation in PG methods is characterised by the element length scale which
determines the distance across which the dissipation acts. In [7] and [4] the length of the element
in space was used. However, this choice becomes inappropriate where there is transient behaviour
in which case the element timestep could be a better choice. Where both spatial and temporal
gradients are important, neither the spatial length of the element or the timestep are entireley
satisfactory. Thus there is ambuguity regarding the type of disspation to use. Section 5 introduces
non-linearity into the method of [4] to define a more appropriate type of dissipation.
Non-linearity also allows gradients to be controlled in directions other than that of∇Ni.

5. OPTIMAL NON-LINEAR METHODS

Many conventional non-linear SUPG methods use an amount of dissipation that is made optimal
in the gradient direction, but acts in the streamline direction [9]. This is achieved by using the
angle between the gradient and streamline directions to calculate the projection of the dissipation
on the gradient vector. However, where the gradient and streamline are perpendicular the
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projection is zero and thus the stabilisation term vanishes. Such approaches are only capable of
shock capture where the gradient and streamline are not perpendicular. In the non-linear method
presented in the current section, the added dissipation acts in the direction of the solution
gradient. This approach allows shock capture even when the gradient and streamline are
perpendicular. The dissipation used is made optimal with a method based on that of [4]. In
section 4, an optimal stabilisation matrix P was cited based on the optimal coefficient α in the
Riemann space of As = RsΛsLs. This stabilisation matrix describes the magnitude of numerical
dissipation that is introduced to an element to stabilise the solution. The coefficient optimises the
magnitude of the dissipation for a particular choice of length scale. In the linear discontinuous
Petrov-Galerkin (DPG) method described in section 4, the spatial length of the element is used for
this length scale. A disadvantage of this approach is that the same choice of length scale is used
everywhere within the solution domain. Use of the element spatial width will become optimal as
transient solutions reach steady-state but may be inappropriate at early time while there is time
dependent behaviour. Using the element time-step as the length scale will produce optimal
dissipation where the temporal gradients dominate over the spatial gradients but becomes
inappropriate once steady-state is reached. In general, the direction of the solution gradient
n · ∇Ψ

|∇Ψ| will vary across the problem and may change with time also. Linear methods such as that
discussed in section 4 have no knowledge of the solution gradient, and consequently are not
guaranteed to be optimal at all points across the domain at all times. Another deficiency they
have, also arising from the fact they have no local knowledge of solution gradient, is they are not
capable of shock-capture; they introduce dissipation only along the direction of the∇Ni term in
the stabilisation. To enable shock-capture, local gradients of the solution must be taken into
consideration making the scheme non-linear. The direction in which the dissipation is optimal is
then defined locally depending on the solution gradient. In the present section, a method is
formulated that is optimal in a direction defined locally depending on the direction of the solution
gradient in space-time. Eq. 11 may be generalised to the form

(I−∇ ·A∗P∗)R = 0 (15)

where A∗ is a modified advection velocity based on the solution gradient∇Ψ ≈
∑

j∇Njφj . A∗

will therefore differ in each element due to variations in solution behaviour, and is defined in Eq.
17. P∗ is anM×M angular stabilisation matrix defined according to

P∗ = R∗sΛ
∗−1
s GTR∗GΛαL

∗
GGΛ

∗−1
s L∗s (16)

in which R∗s and L∗s are the matrices containing the right and left eigenvectors of A∗s = ∇Ni

||∇Ni|| ·A
∗

respectively, and Λ∗s the diagonal matrix of eigenvalues associated with the Riemann
decomposition of A∗s. Thus P∗ is the same function of A∗ that P is of A in Eq. 11. Therefore,
the underlying optimal formulation is identical in the NDPG method and the linear method. Eq.
15 may be used as a general form for SUPG equations; note that using A∗ = A and P∗ = P
results in the standard definition. In the current work, the definition used for A∗ is akin to that
used by Donea and co-workers [12]. That is to project the advection velocity A onto the gradient
of the solution. This enables shock capture by ensuring the diffusion acts along the direction of
the solution gradient which varies locally rather than acting along the direction of∇Ni at all
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solution points in the domain. One projects the advection velocity in this fashion by considering
the two vectors A = (Ax,Ay,Az,At)

T and ∇Ψ = (∂Ψ
∂x
, ∂Ψ
∂y
, ∂Ψ
∂z
, ∂Ψ
∂t

)T , and applying the cosine
rule. Note that each component of∇Ψ is itself a vector of lengthM, component m of which
refers to moment m in the angular expansion of Ψ. Each component of A is anM×M matrix.
The cosine rule defines the angle θ subtended between the vectors A = (Ax,Ay,Az,At)

T and
∇Ψ = (∂Ψ

∂x
, ∂Ψ
∂y
, ∂Ψ
∂z
, ∂Ψ
∂t

)T as illustrated in Fig. 1. Note that θ is therefore a vector of lengthM.

n -

||A∗||� -

•�
�
�
�
�
��

- ∇Ψ

A

θ)

Figure 1. Angle Between Advection Direction and Solution Gradient

The cosine rule states that cos θ = A·∇Ψ
||A|||∇Ψ|| . The direction of the gradient is given by the unit

vector n = ∇Ψ
||∇Ψ|| . The projection of A on ∇Ψ may be written ||A∗|| = ||A|| cos θ. This is simply

the length (or 2-norm) of the vector

A∗ = S (A · ∇Ψ)∇Ψ

||∇Ψ||2
(17)

where ||∇Ψ|| =
√

(∂Ψ
∂x

2
+ ∂Ψ

∂y

2
+ ∂Ψ

∂z

2
+ ∂Ψ

∂t

2
) is the Euclidean norm of∇Ψ. This is simply the

geometric length (or 2-norm) of the solution gradient. Thus ||∇Ψ|| is a vector of lengthM and
(A · ∇Ψ) a vector of lengthM. S = −Sign(R) is a sign change necessary to ensure the added
dissipation is positive, with Sign(R) defined to be a vector of lengthM containing either a +1 or
a −1 in row µ depending on the sign of Rµ. A∗ is anM×M diagonal matrix defined according
to

A∗µ,ν =

{
S (A·∇Ψ)µ∇Ψµ

||∇Ψ||2µ
µ = ν;

0 µ 6= ν.

where µ = 1, 2, ...,M refers to a particular moment in the angular expansion of Ψ and (A · ∇Ψ)µ
refers to the dot product (A · ∇Ψµ). Row µ of the vectors ||∇Ψ||2 and ∇Ψ is denoted by ||∇Ψ||2µ
and ∇Ψµ respectively. It is useful to define also the diagonal matrix B where
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Bµ,ν =

{
S (A·∇Ψ)µ
||∇Ψ||2µ

µ = ν;

0 µ 6= ν.

One may then write A∗ = B(I∇Ψ) where I∇Ψ is used to denote anM×M matrix containing
row µ of the vector∇Ψ at position µ on the main diagonal.

5.1. Void Treatment

In a material, the optimal NDPG approach discussed relies on a Cholesky factorisation of the
scattering removal operator to reliably form a diagonal system of equations in Riemann space.
That is to use Hs = GTG in which Hs = LsHRs is the mapping of the scattering-removal
matrix operator into the Riemann space of As, and GT and G are the Cholesky factors of Hs.
These Cholesky factors are defined only if Hs has a positive non-zero eigenstructure. The
strength of this approach is that it allows the optimal scheme to be applied within any angular
discretisation framework, as a diagonal system can easily be formed. In a void, the problem
reduces to pure advection comprising only the streaming term. The H term is absent from the
equation and so the Hs Riemann term is not present in the one-dimensional diagonal equation.
Consequently, the system along the streamline in a void is simply

Λs
∂Ψs

∂s
+ αhΛs

∂

∂s
(Λs

∂Ψs

∂s
) = 0 (18)

where h is the length scale, typically h = ∆x
4

or h = ∆x
2

and ∆x is the width of the element. α is
the optimal coefficient for the artificial dissipation in a void. By examining the DG stencil of Eq.
18 using this choice of length scale, one finds that α = 0.25 matches the analytical solution at the
outlet node of the element. Selecting this choice of α in elements that contain a void, while using
the previous definition elsewhere, one has an NDPG scheme that can stabilise transport solutions
across all regimes. It is shown in [4] that α approaches 0.25 in the optically thick case also. It is
left as the topic of future work to assess how good an approximation it is to use α = 0.25
throughout the domain, which would preclude the need for the Cholesky factorisation in Eq. 16.
There is strong motivation to attempt this, as it would improve on the efficiency of the NDPG
method.

5.2. Length Scale

It is necessary to multiply the upwind term by a characteristic length h. This determines the
distance into the element the acting diffusion is to be applied. Conventional Petrov-Galerkin
formulations often use h = ∆x

2
as this characteristic length, in which ∆x is the width of the finite

element in space. This correctly centres the equation residual at the centre of mass (CoM) of the
basis function, for continuous finite element representations. In the present work, where
discontinuous finite elements are used to formulate the space-time discretisation, the CoM of the
basis function is centred a distance ∆x

4
from the upwind boundary of the element. It is

recommended therefore, that h = ∆x
4

be used with the NDPG method instead of h = ∆x
2

. This
translates the equation residual along the gradient of the basis function adding additional
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upwinding to the NDPG finite element stencil, correctly positioning the residual calculation at the
CoM of the discretisation. This is important for ensuring the method uses the correct amount of
upwinding. The finite element stencil for the standard DG method without using any added
dissipation is shown to be

[
−1 1

2
1
2

0 0

0 −1
2

1
2

0 0

]

while the NDPG stencil, using h = ∆x
4

, is found to be

[
−1 3

4
1
4

0 0

0 −3
4

3
4

0 0

]

Examining these two stencils, one can see that using h = ∆x
4

for the characteristic length in the
NDPG discretisation amounts to increasing the upwinding by 50%, with respect to standard DG.
Interestingly, the downwind balance remains unaltered. Note this is akin to shifting the residual
calculation upwind along the gradient by using (x0 − ∆x

4
) in the Taylor expansion of R, about the

origin x0 of the discontinuous finite element. Note that the stencil for standard PG methods using
h = ∆x

2
is

[
−1 1 0 0 0

0 −1 1 0 0

]

6. NUMERICAL EXAMPLES AND DISCUSSION

In this section results are presented for the NDPG optimal solver algorithm using different
angular schemes. These include the spherical harmonics method and the discrete ordinates
method. The non-linear scheme is demonstrated for a set of demanding radiation transport
problems that include time dependent and steady-state cases.

6.1. Problem 1: Time Dependent Absorber

Fig. 2 illustrates in the solution domain of problem 1, the time dependent absorber. This
calculation is performed on a three dimensional Cartesian (x,y,z) mesh, with the spatial domain in
the x,y plane and the time domain along the z-axis. A 12×12×12 element mesh is used for this
configuration. Material properties used are shown in Tab. I. A cross-section of 7cm−1 is used
throughout the spatial part of the domain. An imposed radiation source is located in the range
5cm ≤ x ≤ 8cm, 5 cm ≤ y ≤ 8 cm. The cross-section is significant, and combined with the
relatively low spatial and temporal resolution makes this a very demanding problem for the
standard DG method. The original linear optimal method, shown to work well for steady-state
solutions, is shown to perform quite poorly for this problem in Fig. 3. This plot comprises
line-outs of the scalar flux solution through the centre of the mesh and parallel to the x,y axes
(Line-Out A) and through time parallel to the temporal axis (Line-Out B). The DG solution shows
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severe oscillation due to the inadequate spatial and temporal resolution. The linear optimal
method degrades the solution to this problem considerably, introducing large oscillations in the
time direction that are not seen on the standard DG solution. Introducing non-linearity totally
removes these oscillations, and the new non-linear NDPG scheme stabilises the transport solution
very effectively. This is demonstrated in Fig. 4 for (a,b) a P3 approximation and (c,d) an S4

approximation. The NDPG scheme perfoms consistently well for both angular approximations,
fully stabilising the finite element solution. The exact solution is plotted for benchmarking. This
shows that the NDPG method improves accuracy as well as robustness.

6.2. Problem 2: Void

The NDPG method offers an effective remedy for oscillation in voids, where other schemes may
perform poorly. To demonstrate the void treatment using the NDPG scheme, the two dimensional
domain illustrated in Fig. 5 was used. This comprised a 12 cm × 12 cm region driven along the
left and lower boundaries with a flux of 1.0 ncm−2s−1, using pure advection to produce a ray at
45deg across the mesh. Scalar flux line-outs across the centre (Line-Out A) and along the top
edge (Line-Out B) of the domain are presented for each method on coarse and fine spatial grids in
Fig. 6. For these calculations, an S2 angular approximation was used, in order to produce a well
defined ray. The sharp front of the ray is clearly visible on both grids for both methods, and places
strain on the spatial approximation causing additional oscillation when stabilisation is not used.
These oscillations are smoothed extremely effectively by the NDPG method using just 20
non-linear matrix iterations, along both line-outs. Note that even on a fine mesh, the DG result
exhibits significant oscillation. The NDPG method, however, is free from this oscillation that
arises from inadequacies of the DG spatial differencing scheme.

6.3. Problem 3: Heavy Absorber Problem

The third test case is illustrated in Fig. 7. The material properties are shown in Tab. II. This
problem is difficult to stabilise because oscillations occur in the direction of the solution gradient.
It is therefore an important test for the NDPG method. The problem comprises a source region in
the range 1cm ≤ x ≤ 2cm, 1 cm ≤ y ≤ 2 cm. This is located inside a heavy absorber in the range
0cm ≤ x ≤ 2cm, 1 cm ≤ y ≤ 2 cm. Results for the DG and NDPG schemes are illustrated in
Fig. 8. Four line-outs are shown. Line-out A in Fig. 8a is through the centre of the domain in the
x direction, with line-out B in Fig. 8b showing details at the corner of the peak. Line-out C in
Fig. 8c is through the centre of the domain in the y direction, with details at the corner of the peak
shown in Fig. 8d for this direction. The DG scheme produces oscillations all the way round the
edge of the source peak. These are clearly visible in the line-outs. The NDPG removes these
oscillations from the transport solution very effectively in this problem. This is achieved by
applying the dissipation only in the gradient direction.

6.4. Convergence

An attempt has been made to improve the convergence rate of the NDPG matrix iteration.
Improvement is achieved by slowing down the rate of convergence by combining the solution Ψk

from the current iteration k with the old solution Ψk−1 from the previous iteration k-1. Each of
these two solutions is weighted with a relaxation parameter 0.0 ≤ ω ≤ 1.0. The matrix solve is
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then advanced using the variable Ψk+1 = ωΨk + (1− ω)Ψk−1. Fig. 9 shows the effect that
different relaxation parameters ω have on the NDPG matrix solve, where the 2-norm is plotted
against iteration number. Convergence is approached more smoothly with a greater amount of
relax, although many more iterations result. Reducing the amount of relax heavily reduces the
required number of iterations to achieve a given error however the approach is less smooth. For
the simulations presented in this report, a relaxation parameter ω = 0.5 is used. It is sometimes
beneficial to use an adaptive relax. This is implemented by reducing the value of ω in response to
a change in the behaviour of the convergence during the iteration process. For example, the value
of ω could be reduced by a factor 2 each time the behaviour of the 2-norm of the solution changes
between non-linear matrix iterations. Another alternative is to optimise the relaxation parameter,
by solving Ψk+1 = ωΨk + (1− ω)Ψk−1 for the value of ω that minimises the 2-norm of the
system. Such a topic is left for the subject of future work.

7. CONCLUSIONS

A new non-linear discontinuous Petrov-Galerkin (NDPG) method is presented that is extremely
effective for removing oscillations in the solution to the Boltzmann Transport Equation in
transient and steady-state radiation transport applications. The method applies artificial
dissipation internal to an element via a novel finite element Riemann approach, in the direction of
the solution gradient. Conventional linear stabilisation methods such as SUPG apply dissipation
in the direction of the streamline rather than the direction of the solution gradient. Such methods
use the same length scale throughout the solution domain, and tend not to remove oscillation from
the solution gradient direction. There are a class of problems that exhibit additional oscillation in
the gradient direction that therefore cannot be stabilised by conventional streamline upwind
methods. By using a gradient-informed scaling of the advection velocity, the new method is able
to smooth this type of oscillation extremely effectively in a variety of radiation transport
problems. Results have been presented for a set of demanding steady-state and time dependent
test problems. Methods for improving the convergence rate of the non-linear iteration used in the
NDPG method have been presented. This includes an adaptive relaxation method that
dramatically reduces the number of iterations needed to achieve highly converged solutions to the
problem.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the Computational Physics Group at AWE for their support
during the undertaking of this work. The method presented herein has been developed as part of a
PhD project in a collaborative effort between Imperial College London and AWE. Sponsorship of
this PhD has been provided by AWE plc. The support of the Applied Modelling and Computation
Group at Imperial College London is greatly appreciated.

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

13/22



S. R. Merton et al

Region 1:

Region 2:

Key:

x

y

V
ac

u
u
m

 B
o
u
n
d
ar

y

Vacuum Boundary

Vacuum Boundary

V
ac

u
u
m

 B
o
u
n
d
ar

y
12 cm

4
 c

m

4 cm

(0,0)

12 cm

Figure 2. The Time Dependent Absorber Problem

Table I. Time Dependent Absorber Properties

Material Source σt σs
Region (n s−1) (cm−1) (cm−1)

1 0.0 7.0 0.0

2 1.0 7.0 0.0
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Figure 6. Scalar Flux Line-Outs Through the Void Problem
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Table II. Heavy Absorber Properties

Material Source σt σs
Region (n s−1) (cm−1) (cm−1)

1 0.0 0.1 0.0

2 0.0 1000.0 0.0

3 1.0 1000.0 0.0
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Figure 8. Scalar Flux Line-Outs Through the Heavy Absorber
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