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ABSTRACT

The treatment of the energy variable in deterministic neutron transport methods is based on a
multigroup discretization, considering the flux and cross-sections to be constant within a group. In
this case, a self-shielding calculation is mandatory to correct sections of resonant isotopes. In this
paper, a different approach based on a finite element discretization on a wavelet basis is used. We
propose adaptive algorithms constructed from error estimates. Such an approach is applied to
within-group scattering source iterations. A first implementation is presented in the special case of
the fine structure equation for an infinite homogeneous medium. Extension to spatially-dependent
cases is discussed.
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1. INTRODUCTION

Multigroup discretization is at the basis of the treatment of the energy variable in deterministic
neutron transport methods. It consists in considering as constant cross-sections and flux within a
group; the cross-sections are obtained thanks to a pre-homogenization step in a library processing
code. Self-shielding calculation is necessary to correct cross-sections of resonant isotopes but is
known to be a main source of error. Advanced self-shielding models as exposed in [1, 2] in
conjunction with an optimization of the energy group mesh structure as proposed in [3] are
incorporated in modern transport codes.

Another approach based on a Galerkin method is at the basis of the present work. Such a
treatment of the energy had been first proposed in [4] with polynomial-based finite elements;
however, the use of polynomial basis is not adapted to resonance singularities. We have proposed
to handle this point by using wavelet basis. These function basis are obtained through a
thresholding procedure applied to the Discrete Wavelet Transform (DWT) of a sampled
cross-section or approximate flux in each group. The theoretical and implementation details of
such a method can be found in [5]. This first study has revealed the interest of such an approach
but also some questions. Although the number of coefficients to be kept, i.e. the size of the
wavelet support considered, is relatively small, error on the final flux is not controlled and the
extension of this method to heterogeneous cases is not straightforward. We propose a way to
improve these two issues thanks to adaptive algorithms. Such procedures are embedded in
within-group scattering iterations.
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In Section 2, we first recall the framework of this first study and then describe the broad lines of
the adaptive method. Results are presented in Section 3. Finally, Section 4 discusses properties a
mesh should exhibit to improve the performances of such a method.

2. FRAMEWORK

A first series of tests are carried out on the fine structure equation which is a simplified form of the
transport equation in an infinite, homogeneous medium under the Livolant-Jeanpierre hypotheses.
The equation, where only the energy variable (or equivalently the lethargy u) remains, is written:

(σ∗t (u) + σd) ϕ(u) = σd + r∗(ϕ(u)) (1)

where r∗ is the resonant collision operator defined as:

r∗(ϕ(u)) =
1

1− α

∫ u

u−ε

du′eu′−uσ∗s(u
′)ϕ(u′) (2)

We have denoted respectively σ∗s and σ∗t the scattering and total microscopic cross-sections of the
resonant isotope read in pointwise format (PENDF). σd is the dilution cross-section defined as
σd =

Σ+
t

N∗ , ratio of the macroscopic total non-resonant cross-section and the concentration of the
resonant isotope.

Eq. 1 can be discretized in each lethargy group Ig (172-group XMAS mesh is used) thanks to a
discontinuous finite element method using a wavelet basis (gg

m)m∈[1,Ng ] of (L2(Ig))
Ng . The weak

formulation on a lethargy interval Ig is written in a matrix form:

HgΦg =
∑

g′
S(g←g′)Φg′ + F g (3)

with:

• Φg, vector containing the components of Φ in the wavelet basis

• Hg corresponding to the total interaction rate density:

Hg
m,n =

∫

Ig

duσg∗
t (u)gg

m(u)gg
n(u) + δm,nσd

• F g representing a fixed source term:

F g
m = σd

∫

Ig

dugg
m(u)

• S(g←g′), the scattering source term, defined by:

S(g←g′)
m,n =

1

1− α

∫

Ig

dugg
m(u)

∫

Ig′∩]u−ε,u[

du′eu′−uσ∗s(u
′)gg′

n (u′)
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Eq. 3 is solved using a Richardson iterative scheme as done for source iterations in the method of
characteristics or discrete ordinate method:

HΦn+1 = SΦn + F (4)

In the spatially-dependent case, H is a block diagonal matrix originating from the spatial and
angular integration of the transport equation in each group and S is assembled from the different
S(g←g′) to consider scattering between groups.

In the remainder, we suppose that operators H and S have been calculated for a nearly full
wavelet basis (φi)i∈N .

3. ADAPTIVENESS

The aim of adaptiveness is double:

• improve the operators discretization at each iteration by selecting dynamically the basis
functions and consequently, optimize the computational cost;

• guarantee an error bound for the final flux solution.

Matrices Hj (resp. Sj) used at iteration j are “extracted” from operator H (resp. S) with a
support ΛH

j (resp ΛS
j ) to be determined. ΛH

j is the set of subscripts s.t. Hj is expressed on the
wavelet basis (φi)i∈ΛH

j
. The main idea in the remainder is to choose this support in order to

control the convergence.

3.1. Two-loop algorithm

A first algorithm with two iterative loops as given in [6] was implemented. The system solved at
each iteration is written as

Φn+1
j+1 = Aj+1

(
Sj+1Φ

n
j+1 + F

)
(5)

where A = H−1. Iterations on j modify dynamically the support of the system solved whereas
those on n are done with a quasi-constant support in order to make the Richardson iterative
scheme converge to a given accuracy. The error can be expressed as:

Φn+1
j+1 − Φ = Aj+1

(
Sj+1Φ

n
j+1 + F

)− A(SΦ + F )

= (Aj+1 − A)
(
Sj+1Φ

n
j+1 + F

)
+ A (Sj+1 − S) Φn

j+1 + AS
(
Φn

j+1 − Φ
)

which leads to a bound for the relative error:

∥∥Φn+1
j+1 − Φ

∥∥
∥∥Φn+1

j+1

∥∥ ≤ 1
1−‖AS‖

(∥∥(Aj+1 − A)
(
Sj+1Φ

n
j+1 + F

)∥∥
∥∥Φn+1

j+1

∥∥ + ‖A‖
∥∥(Sj+1 − S) Φn

j+1

∥∥
∥∥Φn+1

j+1

∥∥ +

‖AS‖
∥∥Φn+1

j+1 − Φn
j+1

∥∥
∥∥Φn+1

j+1

∥∥

)
(6)
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A main issue is how to choose matrix Sj+1 and Aj+1 or, in other words, how to select the wavelet
support. We clearly see that the error is monitored by two terms related to the number of
coefficients kept for representing A and S operators and a third term involving the residual of the
iteration. They are denoted respectively δεA, δεS and δεres. The main idea in the remainder is to
monitor the errors related to the operator discretization using the numerical residual term in order
to obtain a relation of the type:

∥∥Φn+1
j+1 − Φ

∥∥
∥∥Φn+1

j+1

∥∥ ≤ K

∥∥Φn+1
j+1 − Φn

j+1

∥∥
∥∥Φn+1

j+1

∥∥ (7)

where K is a given constant. Error on the flux is thus controlled thanks to the numerical residual
at each iteration.

δεS can be practically controlled by a thresholding on the product SΦn ensuring:
∥∥Sj+1Φ

n
j+1 − SΦn

j+1

∥∥ ≤ εj+1

∥∥Φn
j+1

∥∥ (8)

Coefficients kept give us the new support ΛS
j+1 growing slowly when decreasing εj+1 thanks to

wavelet properties. A similar procedure can be used for δεA ensuring:
∥∥(Aj+1 − A)

(
Sj+1Φ

n
j+1 + F

)∥∥ ≤ ε′j+1

∥∥Φn
j+1

∥∥ (9)

Eq. 6 then becomes:
∥∥Φn+1

j+1 − Φ
∥∥

∥∥Φn+1
j+1

∥∥ ≤ 1

1− ‖AS‖

(
ε′j+1

∥∥Φn
j+1

∥∥
∥∥Φn+1

j+1

∥∥ + εj+1 ‖A‖
∥∥Φn

j+1

∥∥
∥∥Φn+1

j+1

∥∥ + ‖AS‖
∥∥Φn+1

j+1 − Φn
j+1

∥∥
∥∥Φn+1

j+1

∥∥

)
(10)

As proposed in [6], a geometrical decreasing sequence of (εj) is fixed and iterations on n are
performed until the residual term becomes inferior to the value imposed by this sequence. εj and
ε′j are set in order to ensure that the first two terms defined in Eq. 6 decays at the same rate i.e.

ε′j+1 =
εj+1

‖A‖ (11)

At a given j, Richardson iterations are carried out until
∥∥Φn+1

j+1 − Φn
j+1

∥∥
∥∥Φn+1

j+1

∥∥ ≤ εj+1

‖AS‖ (12)

Thus, the relative error on the flux is bounded by the sequence (NB)j directly linked to the
decreasing sequence of (ε)j:∥∥Φn+1

j+1 − Φ
∥∥

∥∥Φn+1
j+1

∥∥ . 3

1− ‖AS‖εj+1 = NBj+1 (13)

considering ∥∥Φn+1
j+1

∥∥ ≈
∥∥Φn

j+1

∥∥ (14)

The choice of (εj) is arbitrary and some numerical tests are performed with different sequences.
A possibility is to choose

ε =
εj+1

εj

= ‖AjSj‖ = ρj
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the rate of convergence of Richardson method.
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Figure 1. Error behaviour for different ε values on groups 26 to 29 of 16O

Two different phenomena can occur depending on the ε value compared to ‖AS‖ as presented in
Fig. 1 for 16O where ‖AS‖ = 0.01:

• ε >> ‖AS‖ (case ε = 1/2 in Fig. 1): Richardson iterative scheme converges rapidly (in one
iteration in the case presented) and the error decreases linearly at the same rate than the
sequence (ε)j but it needs many outer iterations. In our example, the slope of the straight
line is equal to −0.3 = log10(1/2).

• ε << ‖AS‖: The number of coefficients kept increases rapidly and several Richardson
iterations are necessary to converge at a given support.

The case ε = ρ in Fig. 1 is an intermediate choice. A compromise has to be found between
increasing too slowly the support causing useless outer iterations and keeping too many
coefficients which leads to the resolution of a uselessly large linear system. This choice is
discussed in Subsection 3.3.

3.2. One-loop algorithm

A second algorithm is proposed as a simplification of the previous one with only one level of
iterations to be closer of what is classically done for source iterations. It implies to control at the
same time the evolution of the supports and the residual. Eq. 3 is written as:

Φn+1 = An+1
(
Sn+1Φn + F

)
(15)

Eqs. 3 and 15 imply the following relationships:
{

(I − AS) (Φn+1 − Φ) = (An+1 − A) (Sn+1Φn + F ) + A (Sn+1 − S) Φn − AS (Φn+1 − Φn)

Φn+1 − Φn = (An+1 − An) (Sn+1Φn + F ) + An (Sn+1 − Sn) Φn + AnSn (Φn − Φn−1)
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And thus, the error is controlled thanks to an inequality similar to Eq. 6 for the two-loop
algorithm:

‖I − AS‖
∥∥Φn+1 − Φ

∥∥ ≤
∥∥(

An+1 − A− AS
(
An+1 − An

)) (
Sn+1Φn + F

)∥∥
+

∥∥A
((

Sn+1 − S
)− SAn

(
Sn+1 − Sn

))
Φn

∥∥
+

∥∥ASAnSn
(
Φn − Φn−1

)∥∥

≤ δεA + δεS + δεres (16)

Such a bound for the operator-related error δεS (resp. δεA) is interesting because it takes into
account both ‖Sn+1 − S‖ (resp. ‖An+1 − A‖), the distance between the current operator and the
complete one and ‖Sn+1 − Sn‖ (resp. ‖An+1 − An‖), the distance between two successive
operators. As the first term decreases with n until 0, the second one increases until ‖S − Sn‖
(resp. ‖A− An‖). So, we have, for example for δεS:

δεS
(Sn+1=Sn) = δεS

init = ‖A (Sn − S) Φn‖ (17)

δεS
(Sn+1=S) = δεS

last = ‖ASAn (S − Sn) Φn‖ (18)

As ‖AS‖ < 1 (ensuring the convergence of Richardson iterations), we guarantee:

δεS
last < δεS

init (19)

The error bounds defined by Eq. 16, δεS
init and δεS

last are at the basis of our algorithm. Three
different situations can occur between two iterations:

• δεres ∈ [δεS
last, δε

S
init]. It is possible to decrease the error due to operator S discretization to

the numerical residual, so, we choose Sn+1 to ensure δεS = δεres;

• δεres < δεS
last. Numerical residual is too small to be reached directly. Error on operator S is

reduced to
δεS = αδεS

init + (1− α)δεS
last (20)

with α fixed ∈]0, 1[;

• δεres > δεS
init. The numerical residual is not yet enough converged, so, we do not modify the

support of operator, Sn+1 = Sn.

With such an approach, even if we do not know the behaviour of δεS
(Sn+1) between δεS

init and δεS
last

(strictly decreasing or having a minimum or a maximum), we ensure that the error monotonically
decreases and so the convergence of the algorithm. In a first version of the algorithm, we apply to
A the same procedure as detailed for S (by replacing δεS by δεA and δεres by δεS).

The only remaining parameter is α. A numerical study is performed to give some tendencies for
its selection.
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3.3. Efficiency and extension to spatially-dependent configurations

One of the goal of adaptiveness referred to in the introduction is the improvement of the
algorithm efficiency. In this context, a measure of the computational cost is defined by:

cost =
∑

j

∑
n

(
ΛS

j,n + ΛA
j,n

)
(21)

where ΛS
j,n (resp. ΛA

j,n) represents the support size of operator Sn
j (resp. An

j ) at iteration j, n.

In the general case, the costful operation is the angular-spatial resolution, i.e. obtaining matrix
H−1. As soon as this matrix is known, the cost of source iterations is directly linked to the size of
operators manipulated: ΛS

j,n construction of matrix Sn
j and ΛA

j,n the order of the system used for
the flux calculation. It justifies the use of Eq. 21 as a measure of the cost of algorithms.

Minimizing the cost is the guideline to choose the remaining parameters, the decreasing sequence
(εj) for the two-loop algorithm and the reduction rate α for the single-loop one.

The representation of the cost as a function of ε in Fig. 2 for the groups 26 to 29 of 16O underlines
the importance of judiciously selecting the rate of decay. The choice of εj = ‖AjSj‖ seems
relevant for all cases studied as illustrated for 16O in Fig. 2 where ‖AS‖ = 0.01. Note that
‖AjSj‖ converges rapidly to ‖AS‖.
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Figure 2. Cost for different ε values for a given accuracy of 10−6 for groups 26 to 29 of 16O

Remarks are similar for the choice of the parameter α in the single-loop algorithm as shown in
Fig. 3 . If not enough coefficients are kept at each iteration, the error decreases slowly which
causes an important cost. On the opposite, if an important number is kept, large systems have to
be solved uselessly. An interesting compromise seems to keep coefficients in order to reduce the
error by about half (α = 0.5).

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

7/13



D. Fournier, R. Le Tellier

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
400

600

800

1000

1200

1400

1600

1800

parameter value

c
o

s
t

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
300

350

400

450

500

550

600

650

700

parameter value

c
o

s
t

Figure 3. Cost of the algorithm depending on the parameter α value for a given accuracy ε = 10−5

on group 56 of 56Fe (left) and ε = 10−4 on group 88 of 238U (right)

When these parameters have been selected, the algorithms can be tested on the fine structure
equation. However, the treatment of the error related to operator A is not extensible to
spatially-dependent problems. A simple alternative consists in using for A the same support as the
one obtained for S. Fig. 4 presents the number of coefficients kept for each operators on the
previous algorithm and the accuracy obtained at each iteration. Let us note that, for a standard
accuracy of 10−3, the support of S is greater than the H one and consequently, using S support
for A discretization should be a conservative choice. Obviously, because of this strategy some
coefficients kept for operator S are not necessary because there is a ratio of ‖A‖ between δεA and
δεS (Eq. 10). The cost is increased but convergence is not disturbed for an accuracy of about
10−3. This simple approach seems a good starting point to handle spatially-dependent cases.
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Figure 4. Comparison of the number of coefficients kept on operators S and H for group 88 of
238U

Let us now compare the results obtained with the different algorithms. All these tests are
performed with the optimal thresholding strategy proposed in [5] (use of Canuto’s thresholding

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

8/13



Adaptive Algorithms for a Self-Shielding Wavelet-Based Galerkin Method

on the Bondarenko flux with symmlets of 6th order).

Table I summarizes the different strategies used in Figs. 5 and 6 on the group 88 of 238U and 56 of
56Fe in order to compare the algorithms.

Table I. Strategies used in Figs. 5 and 6 to compare the different algorithms

Adaptive Non Adaptive
Algorithms Algorithm (?)

2 thresholding procedures 1 thresolding procedure
(on S and A operators) (S support used for A operator)

2 levels of iterations solid
(one for the support solid blue line solid red line magenta

and one for Richardson) line

1 level of iterations dashed blue line dashed red line

(?) calculation is done in order to have an optimal cost by limiting the number of Richardson iterations
such that δεres is of the same order as δεS + δεA

With these two cases, the influence of ‖AS‖ on the convergence of the different algorithms can be
studied. For 238U case, ‖AS‖ = 0.27 whereas ‖AS‖ = 0.08 for 56Fe case. In the two-loop
algorithm (resp. one-loop algorithm), the convergence behaviour is relatively independant of
‖AS‖ when using ε = ‖AS‖ (resp. Eq. 20) for controlling δεS and δεA. It explains similarities
between Fig. 5 and Fig. 6. Our algorithms seem to be of a general interest whatever the isotope
and energy range are.
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Figure 5. Comparison of algorithms in terms of convergence (left) and cost (right) for group 88 of
238U with σd = 100 barn - Relative L2-norm error used
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Figure 6. Comparison of algorithms in terms of convergence (left) and cost (right) for group 56 of
56Fe with σd = 100 barn - Relative L2-norm error used

These Figures also underline that the algorithms with one or two loops give similar performances.
The simplified algorithm only slightly deteriorate the convergence and the cost. However, when
using a unique support for A and S, the convergence can be significantly deteriorated. As
expected, the cost is increased by this simplification. The difference between adaptive and non
adaptive algorithms is more important for 56Fe due to one additional iteration. Improvements
relatively to the cost are significant because the cost presented in Figs. 5 and 6 for the non
adpative algorithm is a nearly optimal one and requires a control of the different error terms
(δεres, δεA and δεS).

Furthermore, adaptive schemes present other advantages. In the perspective of
spatially-dependent cases, it allows to consider a different support in each region and thus to keep
only a low number of coefficients in parts without resonances. Moreover, the error is monitored
on the final flux thanks to an a priori estimator contrarily to the non-adaptive algorithm.

4. ENERGY MESH

The previous study was done using the XMAS mesh which had not been devised for a
wavelet-based method and has to be questioned. In this section, we give properties a mesh should
exhibit in order to decrease the number of coefficients used for a given accuracy. Fig. 7
represents, on the left, the cross-section as a function of lethargy and the group limits in the
XMAS mesh for groups 86 to 88 of 238U and 81 to 83 of 239Pu. We compare the convergence of
the relative error ε = r/ ‖Φref‖L2(Ig̃) with respect to the number N of coefficients kept by
considering the XMAS mesh and a mesh where the XMAS groups (e.g. 86 to 88 for 238U) have
been collapsed into a single one (g̃ =

⋃
g

g). r and N are given in Table II for each mesh to ensure

a proper comparison.
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Figure 7. Representation of groups 86 to 88 of 238U (left) and 81 to 83 of 239Pu (right)

Table II. Definition of the number of coefficients N and error r used in the comparison of the
XMAS and collapsed meshes

mesh N r

XMAS
∑
g∈g̃

Ng

√∑
g∈g̃

∥∥Φg − Φg
ref

∥∥2

L2(Ig)

collapsed Ng̃

∥∥∥Φg̃ − Φg̃
ref

∥∥∥
L2(Ig̃)
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Figure 8. Comparison of the convergence on relative L2-norm error by considering three distincts
groups or only one group for groups 86 to 88 of 238U (left) and groups 81 to 83 of 239Pu (right)
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If wavelets are well adapted to represent resonances, it is clear that they are not optimal for groups
with small variations. It explains why the convergence rate is higher with only one group instead
of using the three groups of the XMAS mesh. If groups are more perturbated as it is the case for
groups 81 to 83 of 239Pu, the difference is less pronounced.
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Figure 9. Group 80 (left) and 86 (right) of 235U and modified bound

Another aspect that seems interesting to discuss is group boundaries. Actually, the use of a
periodic cascade algorithm for the DWT can create parasite oscillations at the boundaries and let
us think that the nearest the two boundary values, the better the convergence. We take as example
group 80 of 235U which contains a part of the resonance of the following group on its right
boundary and group 86 where the two bounds are slightly different. Fig. 9 presents these groups
and the modified ones we consider to study impact of boundaries. Fig. 10 presents the rate of
decay for these two examples. Having the left and right bound equivalent does not seem as
important as the group size. Results are close with the initial bound or the modified one.
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Figure 10. Comparison of the convergence for group 80 (left) and 86 (right) of 235U by considering
the whole group and a group with a modified bound
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The most significant aspect concerning the energy mesh seems to be the length of groups. Groups
where the cross-sections exhibit low variations or without any resonance are not adapted to a
wavelet method and have to be merged with their neighbours for the sake of effectiveness.

5. CONCLUSIONS

Adaptive algorithms were proposed for a wavelet-based self-shielding method thanks to a priori
error estimates. Tests were performed in the case of the fine structure equation and modifications
necessary for spatially-dependent test-cases have been discussed. The method we proposed
presents three main advantages: the control, at least partial, of the error on the flux solution, the
capability to treat heterogeneous configurations and the optimization of the computational cost. In
addition, properties a mesh should exhibit to improve convergence were discussed and it has been
shown that the group size is a predominant parameter.

Implementing the algorithm in the spatially-dependent case is now necessary to assess its actual
capability and for further comparisons. Additional developments on meshing could also be
interesting to devise an optimized mesh.
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