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ABSTRACT 

 
A novel method for assessing source convergence in Monte Carlo criticality calculations is 

presented here. The method is based on the stochastic oscillator, an indicator that is commonly 

used in the technical analysis of financial markets, and entails performing a posterior diagnostic 

test on the Shannon entropy of the source distribution. The stochastic oscillator takes advantage of 

the fact that when a scalar time series is increasing (or decreasing) monotonically, its value will be 

higher (or lower) than the previous values. Extensive testing on the OECD/NEA source 

convergence benchmark suite shows that the stochastic oscillator diagnostic performs very well. 

The relative merits of this method compared to previous approaches are discussed.  
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1. INTRODUCTION 

 

In the power iteration method used to solve the k-eigenvalue transport equation, the fission 

source distribution converges at a rate slower than that of the eigenvalue. Unfortunately, it is too 

often the case that reactor analysts rely on convergence of the eigenvalue to determine how many 

batches to discard. Discarding too few batches can lead to gross errors in local tallies due to a 

non-stationary source and an erroneous eigenvalue. In the present work, a method for 

automatically assessing source convergence by performing a posterior diagnostic test on the 

Shannon entropy of the source distribution is developed. 

 

2. THE STOCHASTIC OSCILLATOR DIAGNOSTIC 

 

In this section, we will discuss how the Shannon entropy relates to the convergence of the source 

distribution and demonstrate how the stochastic oscillator can be applied to the Shannon entropy 

to develop a posterior diagnostic criterion for convergence.  

2.1. Source Convergence and Shannon Entropy 
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It can be shown [1] that in the power iteration method for criticality problems, the higher-order 

terms in the source distribution die off as 1n  whereas the higher-order terms in the eigenvalue 

die off as   1n . Here   is the ratio of the first harmonic eigenvalue to the fundamental 

mode eigenvalue, i.e. the dominance ratio, and n is the number of iterations. For problems with a 

high dominance ratio, the eigenvalue may appear to be converged after a few iterations while the 

source distribution is still far from being converged. The error in the calculated eigenvalue due to 

higher harmonics will not be nearly as pronounced as the error in the source distribution at any 

iteration as a result of the extra damping from the 1  term. 

 

From the above considerations, the number of inactive batches in a Monte Carlo criticality 

simulation should be evaluated based on when the source distribution has reached stationarity, 

not the eigenvalue. However, assessing convergence of the source distribution is complicated by 

the fact that it is multi-dimensional. One way of overcoming this problem is to utilize a scalar 

metric called the Shannon entropy. Prior work has shown that the Shannon entropy converges to 

an arbitrary fixed value as the source distribution approaches stationarity [2]. In order to 

calculate the Shannon entropy, we superimpose a rectangular mesh over the spatial domain that 

contains all fissionable sources and tally the number of source sites that appear in each mesh bin. 

Then, the Shannon entropy can be calculated as: 
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where  nH  is the Shannon entropy at the n-th batch,  n

iŜ  is the percentage of source sites in the 

i-th bin at the n-th batch, and p is the total number of spatial bins. Assessing convergence of the 

source distribution becomes considerably less formidable when using Shannon entropy since one 

can look at a line-plot of the Shannon entropy versus batch in order to make a judgment on when 

the source distribution has converged. 

2.2. Assessing Convergence via the Stochastic Oscillator 

 

While visual inspection of a line-plot of the Shannon entropy is certainly a viable method of 

assessing source convergence, it places an unnecessary burden on the reactor analyst and 

necessitates making a subjective decision on how many batches to discard. As we will 

subsequently show, it is possible to automate this decision-making through the use of formulae. 

 

A number of approaches for automatically assessing source convergence have been proposed. 

We review some of the more recent work as follows. Kitada and Takeda propose a convergence 

diagnostic based on the fission matrix [3]. Shim and Kim developed an on-the-fly criterion based 

on the inter-cycle correlation length [4]. Brown et al., having to deal with the inherent limitations 

of implementing routines in a production code with a large user base, investigated simpler 

posterior diagnostics using statistical tests on the Shannon entropy [5]. Ueki developed a step-

refined on-the-fly convergence criterion based on the Wilcoxon signed rank sum [6]. The 

approach taken in the present work combines some of the salient features of Brown’s suite of 

statistical tests and Ueki’s Wilcoxon signed rank sum diagnostic. This allows for a simple 
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implementation within a production Monte Carlo code while reliably producing estimates of the 

batch at which stationarity is reached. 

 

  

The problem of detecting stationarity in the Shannon entropy is in many ways similar to the 

problem of determining trends in stock prices. In the technical analysis of financial markets, a 

number of indicators have been developed to ascertain whether the price of a stock is exhibiting 

a “bullish” trend where the price is increasing, a “bearish” trend where the price is decreasing, or 

whether it is “moving sideways” wherein the price is not trending appreciably in either direction. 

One such indicator is the stochastic oscillator [7]. The stochastic oscillator is based on the 

observation that when prices are increasing nearly monotonically, the current price will be high 

relative to the range of prices in the immediate past. Thus, when the price is not trending, we 

would expect that the current price will be confined within a finite range of prices. 

 

The stochastic oscillator is a combination of two separate indicators. The first, referred to as %K, 

is defined as: 
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where P  is the current price, nPmin  is the minimum price over the last n observations, and nPmax  is 

the maximum price over the last n observations. When the price is trending upwards, %K will be 

close to unity since nPP max , and similarly, when the price is trending downwards, %K will be 

close to zero since nPP min . Rather than using the %K values as an indicator, a simple moving 

average of the last m values of %K is usually used for analyzing price movements and is called 

%D. 

 

In a similar fashion, this idea can be applied to the Shannon entropy as a function of the batch 

number. Let us define 

  
 

pnpn

pnn
n

HH

HH
K

,

min

,

max

,

min




  (3) 

where pnH ,

min  and pnH ,

max  are the minimum and maximum Shannon entropies over the last p 

batches, respectively. Once stationarity is reached,  nK  will fluctuate between zero and one such 

that    5.0nKE . Thus, the following criterion can be used to assess convergence of the source 

distribution: 
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In words, this criterion requires that both  nK  and its average over the next m batches be within 

  of 0.5. 

 

An immediate drawback to this method can be seen in the fact that it requires three arbitrarily-

chosen parameters, p, m, and  . However, as will be shown from the results of extensive testing, 

a single parameter set performs very well in almost all problems. 
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To illustrate how the diagnostic works in practice, let us look at a typical Shannon entropy plot 

shown in Figure 1. We can explain the behavior of the Shannon entropy as follows. A point 

source was used for the initial source distribution giving us a very low initial entropy value since 

the source is concentrated all at one location. The entropy increases rapidly as the source spreads 

throughout the problem. The point at which the entropy hits its maximum represents the state in 

which the source is most evenly distributed throughout the problem geometry. From there on, the 

source will start to accumulate in the areas of highest fission density, causing the entropy to 

decrease until it reaches stationarity. 
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Figure 1.  Typical Shannon Entropy plot for a point source. 

 

 

In the first 40 batches where the entropy is trending upwards,  nK  is close to, if not, unity as we 

can see in Figure 2. Once the entropy hits its maximum and begins to make a downward trend, 
 nK  abruptly changes, going to zero in only a few batches. During this change, the first half of 

the criterion in Eq. (4) is met briefly, but clearly the average of  nK  over the next m batches will 

not be anywhere close to 0.5. From this point forward, the long downward trend in the entropy 

keeps the values of  nK  low until stationarity is finally reached around batch 200. It can clearly 

be seen in Figure 2 that once stationarity is reached,  nK  oscillates back and forth between zero 

and unity. Note that the average of  nK  stops at batch 250 since it is a forward average over 50 

cycles. 
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Figure 2.  Stochastic oscillator K
(n)

 and its moving average. 

 

3. NUMERICAL RESULTS 

 

To test the stochastic oscillator diagnostic, a routine was implemented in the MC21 Monte Carlo 

particle transport code [8] to calculate the Shannon entropy and apply the criterion from Eq. (4). 

The criterion was tested on the OECD/NEA source convergence benchmark problems [9] as 

these represent some of the most challenging source convergence problems. The poor source 

convergence in these problems is the result of the combination of high dominance ratios as well 

as undersampling of the fissionable regions. In the most extreme cases (Problem 1), convergence 

of the source distribution becomes very hard to diagnose due to a dominance ratio nearly unity 

and severe undersampling resulting from a highly decoupled geometry. For most problems, 

undersampling can be remedied by increasing the number of histories per batch. On the other 

hand, slow convergence due to a high dominance ratio will not be affected by the number of 

histories per batch and thus shows up even when solving problems using deterministic methods 

free of stochastic noise. 

 

3.1. OECD/NEA Benchmark Problem 1 

 

Problem 1 from the OECD/NEA benchmark suite is a checkerboard array of spent fuel in a 

concrete and water fuel storage vault. Each spent fuel assembly consists of a 15 x 15 lattice of 

Zr-clad fuel pins moderated by water and surrounded by a steel wall. The problem has vacuum 

boundary conditions on all outer sides. The geometry for this problem is shown in Figure 3. 
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Figure 3.  Geometry for OECD/NEA benchmark problem 1. 

 

 

The specifications for this problem given by the Expert Group on Source Convergence will 

severely undersample the fissionable regions. At most, the Expert Group specifies running 5000 

histories per batch. Given that there are over 8000 fuel pins, running 5000 histories per batch will 

not be nearly sufficient to sample every fuel pin at each batch. In order to isolate the poor 

convergence properties due to undersampling, the problem was run with a number of different 

histories per batch. All cases were started with a uniform source distribution over the array. 

Figure 4 shows an entropy plot for cases run with 5000, 20000, and 10000 histories per batch. 
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Figure 4.  Entropy plot for OECD/NEA benchmark problem 1. 

15 x 15 lattice – water moderated 

1.4 cm pitch – centrally located 

0.44 cm fuel radius, 0.49 cm clad radius 

0.5 cm wall thickness 

  27 cm 

728 cm 

40 cm 

81 cm 

30 cm 

Water 

420 cm in z-direction – 30 cm 

water reflector on top and bottom. 

Concrete 



Application of the Stochastic Oscillator to Assess Source Convergence in MC 

 

2009 International Conference on Mathematics, Computational  

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009 

7/13 

 

As can clearly be seen in Figure 4, running too few histories per batch leads to very big 

fluctuations in the source distribution due to stochastic noise. By increasing the number of 

histories per batch, these fluctuations can be dampened allowing for a better assessment of 

source convergence. Once entropy plots were obtained for a number of cases with varying 

histories per batch, each plot was visually inspected and a judgment made as to when the entropy 

converged. In addition, the stochastic oscillator diagnostic was applied using two different sets of 

parameters (p, m,  ) as defined above to compare with the assessment made via visual 

inspection. Table I shows the results of the visual inspection and application of the stochastic 

oscillator diagnostic.  

 

 

Table I. Comparison of the number of batches for convergence in OECD/NEA benchmark 

problem 1 determined by visual inspection and by the stochastic oscillator diagnostic. 
 

Histories 

per batch 

Batch 

converged via 

inspection 

p m 

Batch 

converged via 

Eq. (4) 

5000 Not converged 
20 50 0.1 60 

500 500 0.1 Not converged 

10000 2500 
20 50 0.1 143 

500 500 0.1 2603 

20000 1700 
20 50 0.1 179 

500 500 0.1 2175 

40000 1800 
20 50 0.1 174 

500 500 0.1 1889 

100000 1600 
20 50 0.1 156 

500 500 0.1 3200 

 

 

In all cases, the first parameter set (p = 20, m = 50,   = 0.1) fails miserably due to the extremely 

high dominance ratio in this problem. The second parameter set performs reasonably well except 

in the case of 100000 histories per batch. Notice in Figure 4 that there is a slight decreasing trend 

in the entropy for this case from batch 1700 to 3100 that is likely due to the strong 

autocorrelation. As a result, the criterion for the stochastic oscillator diagnostic in Eq. (4) is not 

met until the trend reverses around batch 3200. 

 

3.2. OECD/NEA Benchmark Problem 2 

 

Problem 2 from the OECD/NEA benchmark suite is a pin-cell array with irradiated fuel. The fuel 

pin is divided into nine uniform axial regions as shown in Figure 5. We tested Case 2_3 [10] 

wherein the axial burnup profile is slightly asymmetric since this represented the worst case 

scenario as far as source convergence is concerned. Reflective boundary conditions are applied 

on all lateral sides and escape boundary conditions are applied on the top and bottom surfaces. 
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Figure 5.  Geometry for OECD/NEA benchmark problem 2. 

 

 

The specification for this problem calls for 100000 histories per batch. This is more than 

sufficient to sample all axial regions of the problem. While the dominance ratio of this problem 

is very high due to the long length of the fuel pin, the convergence to the true source distribution 

was found to be very smooth unlike in Problem 1 where the loose coupling of the problem led to 

strong autocorrelative trends in the Shannon entropy. Figure 6 shows the normalized Shannon 

entropy as a function of batch number. 
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Figure 6.  Entropy plot for OECD/NEA benchmark problem 2. 
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As can be seen from the above figure, the entropy clearly converges around batch 800. Applying 

the stochastic oscillator diagnostic criteria from Eq. (4) using the first parameter set from 

Problem 1 (p = 20, m = 50,   = 0.1), we find that source convergence is attained at batch 722. 

The stochastic oscillator diagnostic performs well here thanks to the smooth decay of the higher 

harmonic modes and very limited stochastic noise once convergence is attained. 

 

3.3. OECD/NEA Benchmark Problem 3 

 

Problem 3 from the OECD/NEA benchmark suite is a one-dimensional problem with two slabs 

of uranyl nitrate solution separated by a thick slab of water. The width of one of the fissile slabs 

is held constant while the other two slabs are allowed to vary in width as shown in Figure 7. We 

tested Case 2 [11] in which the water slab is 30 cm and the second fissile slab is 18 cm, 

introducing an asymmetry into the system. 

 

 

 

Figure 7.  Geometry for OECD/NEA benchmark problem 3. 

 

 

Running this problem with 5000 histories per batch is sufficient enough to mitigate convergence 

problems due to undersampling and allow us to make a proper assessment of stationarity. To get 

the slowest convergence possible, our initial source guess is a uniform source in the smaller slab. 

Figure 8 shows the normalized Shannon entropy for this problem as a function of the batch 

number. 
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Figure 8: Entropy plot for OECD/NEA benchmark problem 3. 

 

 

The initial overshoot seen in Figure 8 is typical of problems that are started with sources that do 

not sample the most important fissile regions. This is commonly encountered in situations where 

the user defines the starting source as a point source. Visually inspecting the entropy plot, we see 

that stationarity is reached around batch 170. Applying the stochastic oscillator diagnostic 

criteria from Eq. (4) again using the first parameter set from Problem 1 (p = 20, m = 50,   = 

0.1), we find that source convergence is attained at batch 163, showing excellent agreement with 

our visual inspection of the entropy plot. 

 

3.4. OECD/NEA Benchmark Problem 4 

 

The last problem from the OECD/NEA benchmark suite is a 5 x 5 x 1 array of interacting 

spheres made of uranium metal. The middle sphere in the array is slightly larger than all the 

others and hence has a disproportionate share of the power, similar to the situation seen in 

Problem 3. While Problem 3 has a fairly high dominance ratio (on the order of 0.95), this 

problem has a much lower dominance ratio and really only has convergence problems when 

stochastic undersampling is an issue. The geometry for Problem 4 is shown in Figure 9. It should 

be noted that the spheres of uranium metal are separated by air, not void.  
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Figure 9: Geometry for OECD/NEA benchmark problem 4. 

 

 

This problem was run with an initial uniform source distribution and 10000 histories per batch. 

Figure 10 shows the normalized Shannon entropy versus batch number obtained from this run. 
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Figure 10: Entropy plot for OECD/NEA benchmark problem 4. 

 

 

From the entropy plot, we see that the source distribution converges around batch 75 whereas 

applying the stochastic oscillator diagnostic with p = 20, m = 50, and   = 0.1 shows 

convergence to be attained at batch 90. Our subjective assessment of convergence via inspection 

and that obtained from the stochastic oscillator diagnostic again show very good agreement. 
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4. CONCLUSIONS  

 

The stochastic oscillator diagnostic developed in the current work represents a significant 

improvement over previous methods of automated assessment of source convergence in that little 

modification to existing Monte Carlo codes is required to calculate the needed parameters.  In 

addition, the method provided a reliable indicator of convergence for the convergence 

benchmark problems evaluated except for the most challenging problem which was sensitive to 

undersampling and required a modified parameter set to achieve satisfactory performance. It 

should also be noted that the stochastic oscillator diagnostic was tested on a number of Naval 

Reactor (NR) core models and also showed very good performance in assessing source 

convergence. 

 

Further investigations into optimizing the parameter set used for the stochastic oscillator 

diagnostic may prove to be fruitful. An obvious extension of the present work would be to look 

into ways of decreasing the number of parameters required for the stochastic oscillator 

diagnostic, either by introducing functional dependence of one parameter on another, e.g. 

 mm  , or by correlating the performance of a parameter set to, say, the dominance ratio. 
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