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ABSTRACT 
 

The computation costs of neutronics calculation code become higher as physics models and 
methods are complicated. The degree of them in neutronics calculation tends to be limited due to 
available computing power. In order to open a door to the new world, use of GPU for general 
purpose computing, called GPGPU, has been studied [1]. GPU has multi-threads computing 
mechanism enabled with multi-processors which realize mush higher performance than CPUs.   
NVIDIA recently released the CUDA language for general purpose computation which is a C-like 
programming language. It is relatively easy to learn compared to the conventional ones used for 
GPGPU, such as OpenGL or CG. Therefore application of GPU to the numerical calculation 
became much easier. In this paper, we tried to accelerate nuclide burnup calculation, which is 
important to predict nuclides time dependence in the core, using GPU with CUDA. We chose the 
4th-order Runge-Kutta method to solve the nuclide burnup equation. The nuclide burnup 
calculation and the 4th-order Runge-Kutta method were suitable to the first step of introduction 
CUDA into numerical calculation because these consist of simple operations of matrices and 
vectors of single precision where actual codes were written in the C++ language. Our experimental 
results showed that nuclide burnup calculations with GPU have possibility of speedup by factor of 
100 compared to that with CPU. 
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1. INTRODUCTION 
 
The computation time has been increasing for reactor physics calculations where more detailed 
models are employed. In order to overcome high computation costs, parallel computing on a PC 
cluster is one of easy options to select. In this paper, however, we discuss a different solution, 
namely General Purpose computation using on Graphics Processing Unit (GPGPU). Graphics 
Processing Unit (GPU) has many multi-processors and allows implicit parallel computing in the 
manner of data-parallel paradigm. A comparison of performance of GPU and CPU is shown in 
Fig. 1; GPU has great potential for scientific calculations and hardware developing speed is 
surprisingly fast. Software development to support GPGPU is also active. In a few years ago, 
GPGPU was usually used in the combination with the OpenGL which is relatively difficult since 
it, required high programming skills and hardware insights [1]. However GPU programming for 
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general purpose has been changed after the release of NVIDIA’s CUDA. CUDA is a C-like 
language environment that enables programmers to write programs easily to solve complex 
numerical problems. CUDA have been applied for neutronics analysis and acceleration of that 
was achieved [2]. Therefore one can enjoy GPGPU powered by CUDA with much more gentle 
learning curves. 
 
In this work, we tried to accelerate nuclide burnup calculation using the 4th-order Runge-Kutta 
method with CUDA as the first step. Its method is easily referred to parallel programming 
because equations can be divided in simple operations of matrices and vectors. 
 
 

 
 

Figure 1. Development of GPU and CPU performance [3] 
 
 

2. GPGPU WITH CUDA 
 
Programmers use C or C++ language for CUDA, NVIDIA provides dedicated compiler - GPUs 
adapt for parallel computation because those have many multi-processors. For example, NVIDIA 
GeFroce 8800 GTX has 16 multi-processors. Each multi-processor is viewed as multi-core 
device that is enable to execute some operates for large data in parallel. Thus, CUDA treats 
GPUs as the SIMD processors. CUDA provides means of heterogeneous computing using both 
of CPU and GPU. We need to select between GPU and CPU in the each calculation. Commonly 
GPU is suitable for the large size calculation which can be treated as parallel computing. Other 
calculations with small amount of calculations are executed by CPU. For example, in the burnup 
calculation, GPU is used in solving differential equations. Preparation constants or some other 
trivial operations and calculations are executed by CPU. Manners of programming for GPU are 
somewhat different from one for CPU since architectures found in those processors are quite 
dissimilar. GPU is mounted on the video card and has a number of multi processors and four 
kinds of memories, these are classified as global memory, shared memory, constant cache or 
texture cache. A system bus is involved in the data transfer, memory transfer between CPU and 
GPU is necessary. The memory transfer via a system bus, which is the PCI Express x16 in this 
case, is much slower compared with calculation speed. Mostly, global and shared memory units 
are used for numerical calculation. The global memory can be referred from all multi processors 
in a GPU, where access costs quite high because of low bandwidth between the global memory 
and processors. Each multi-processor has a shared memory unit which cannot be referred from 
other multi-processors; the shared memory is much faster than global memory and can be 
recognized as somewhat similar to L1 or L2 cache of CPU. Since the shared memory is not 
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automatically used in CUDA programming, the programmers need to write control of them in 
order to retrieve performance of GPU, which make it difficult for programmers to select right 
approach and “true” parameters in algorithms. 
 

3. FEASIBILITY STUDY 
 
Comparison of computational performance was done between GPU and CPU; NVIDIA 
8800GTX was used for GPU hardware and Core 2 Duo E6600 for CPU. Coding for both of GPU 
and CPU was done in C++ where numerical operations were treated in single precision. At first, 
product of matrix and vector was explored. The result is shown in Fig. 2. GPU performance is 
lower than CPU one because computation load for GPU cannot compensate the cost for memory 
transfer. Calculation time of GPU case contains two memory transfer time between CPU and 
GPU side before and after its actual computation; firstly, data of matrix and vector are 
transferred from CPU to GPU to load into VRAM that is a local memory managed by GPU. The 
GPU is initiated to perform matrix-vector product operations with a pre-loaded code fragment 
running on GPU within the framework of CUDA. Secondly, vectors calculated from matrix-
vector product are extracted from VRAM to be transferred to CPU via the system bus, which is 
PCI-Express x 16 in this case. Since these memory transfer costs much higher than calculations, 
we cannot get good performance in this case. 
 
Next, the product of two matrices, AB=C, was explored in order to make clear the relationship 
between calculation and memory transfer costs. The result of that is shown in Fig. 3. In this 
calculation, two matrices of A and B are transferred to GPU memory before calculation and a 
matrix of C are transferred to CPU side after calculation. The GPU performance of this 
calculation is better than previous calculation despite large data transfer. Hence, the relationship 
between the amount of calculation and memory transfer for above two cases is shown in Table I. 
The amount of calculation over memory transfer is about 2 in case of the product of matrix and 
vector. In this case, it cannot get the GPU potential because memory transfer cost is much larger 
than calculation cost. On the other hand, in case of the product of 2 matrices, the amount of 
calculation over memory transfer is 2m/3. GPU exercise its real performance if the matrix size is 
adequately large. When we write the CUDA programming, the amount of calculation over 
memory transfer is important value to estimate how performance is displayed. 
 
 One should be careful when discussing GPU performance since performance may be much poor 
than that by CPU with little amount of data to be processed because of high cost in memory 
transfer. Therefore the large amount of data set in a calculation is essential to educe high 
performance from GPU. Another noted point is that GPU performance becomes higher as matrix 
size is larger. This is because multi-thread computing is fairly and effectively performed utilizing 
multi-processors in GPU. 
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Figure 2. Product of matrix and vector. 
 
 

 
 

Figure 3. Product of two matrices. 
 
 

Table I. Relationship between amount of calculation and memory transfer. 
 

Product Amount of calculation Amount of memory  
transfer 

( input, output) 

Calculation / 
 memory transfer 

Matrix and Vector 2m2 m2+m, m ≅ 2 
Two Matrices 2m3 2m2, m2 2m/3 

*m is the vector length. 
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4. APPICATION OF CUDA TO NUCLIDE BURNUP CALCULATION 
 
Next, as a realistic application, we applied CUDA to nuclide burnup calculation shown in Eq. (1) 
which analyzes time dependence of number densities of nuclides, with decay, capture, fission 
and (n,2n) reactions. The 4th-order Runge-Kutta method was chosen to solve the differential 
equation. The creation of matrix M in the Eq. (2) and resolution of Runge-Kutta method were 
computed on GPU. The size of matrix M corresponds to number of nuclides which is about one 
hundred or so. However, from the viewpoint of the feasibility study, it needs to enlarge matrix 
size to derive high performance from GPUs. Hence we introduced another dimension in the 
matrix for spatial meshes. Numbers of meshes in which burnup calculation is performed are 
considered in a computation. With enough amount of data set, multi-processors in GPU can be 
effectively used. 
 
From the feasibility study, we have to be careful about memory transfer between CPU side and 
VRAM. The flow chart of this burnup calculation with CUDA is shown in Fig. 4. At first, The 
four kinds of yield matrices, which are decay γd, capture γc, fission γf and (n,2n) reaction γn2n, 
and decay constants λ are transferred from CPU to GPU before burnup calculation loop.  At the 
same time, initial number densities of all nuclides are transferred from CPU to GPU. The number 
densities calculated at the each step are stored on the VRAM and stored number densities are 
extracted from VRAM to CPU at the end in order to reduce memory transfer latencies. In burnup 
calculation, three kinds of reaction rates must be updated by transferring them from CPU to GPU 
via PCI-Express bus at every step because neutron fluxes change as materials are depleted. Since 
transferred data sets are not matrices but vectors, that cost is relatively small. In this calculation, 
these reaction rates treated as constant for the simplified model were transferred to the VRAM at 
each step. The amount of calculation over memory transfer become large by the design as 
mentioned above.  
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Figure 4. Flow chart of the burnup calculation with CUDA. 
 
 
Comparison on computation time GPU and CPU is shown in Table II where the number of 
nuclides is 96. Both codes were written in C++ and treated in single precision. The calculation 
time of GPU contains memory transfer time. As the mesh size is larger, GPU performance 
becomes higher, up to about 100 times faster. 
 
GPU calculation treats single precision. Hence we compared the difference of GPU single 
precision calculation and CPU double precision calculation, in which total time steps is 1000 and 
time intervals are 0.01 day. That difference is very small and the absolute value of the error of 
the major nuclides is shown in Fig. 5. The error is less than or comparable to 0.01%. 
 
 

Table II. Processing time on CPU and GPU 
 

Mesh size 200 1000 4000 8000 
CPU [sec] 4.63e+1 2.32e+2 1.01e+2 2.03e+2 
GPU [sec] 1.15 3.41 10.6 20.0 

CPU / GPU 40.3 68.0 95.7 102 
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Figure 5. Difference of number densities with GPU and CPU. 
 
 

5. CONCLUSIONS  
 
GPGPU would become a remedy for performance in terms of computation speed and its cost.   
Future development on hardware and software for GPGPU would consolidate its position for 
great success. In this study, computation performance of the basic operations of matrix and 
vector using CUDA were verified. And acceleration of burnup calculation was also studied. It 
was confirmed appropriate treatment of large number of threads and small amount of memory 
transfer between CPU and GPU is indispensable for good performance. In the nuclide burnup 
calculation, GPUs performance was accelerated by the factor of 100 compared to that by CPUs. 
If you put in several hundred dollars for GPUs, there is a possibility that numerical computation 
is one hundred times faster. Furthermore, by using the GeForce GTX280 which is the latest 
product of the NVIDIA and has about twice calculation performance than 8800GTX used in this 
paper, more efficient is expected. 
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