
International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009)
Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)

STUDY OF THE ACCELERATION OF NUCLIDE BURNUP
CALCULATION USING GPU WITH CUDA

Shota Okui

Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology
2-12-1-N1-17, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan

okui.s.aa@m.titech.ac.jp

Yasunori Ohoka and Masahiro Tatsumi
Nuclear Fuel Industries, Ltd Fuel Engineering and Development Department
1-950, Asahiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0481 Japan

ya-ohoka@nfi.co.jp; tatsumi@nfi.co.jp

ABSTRACT

The computation costs of neutronics calculation code become higher as physics models and
methods are complicated. The degree of them in neutronics calculation tends to be limited due to
available computing power. In order to open a door to the new world, use of GPU for general
purpose computing, called GPGPU, has been studied [1]. GPU has multi-threads computing
mechanism enabled with multi-processors which realize mush higher performance than CPUs.
NVIDIA recently released the CUDA language for general purpose computation which is a C-like
programming language. It is relatively easy to learn compared to the conventional ones used for
GPGPU, such as OpenGL or CG. Therefore application of GPU to the numerical calculation
became much easier. In this paper, we tried to accelerate nuclide burnup calculation, which is
important to predict nuclides time dependence in the core, using GPU with CUDA. We chose the
4th-order Runge-Kutta method to solve the nuclide burnup equation. The nuclide burnup
calculation and the 4th-order Runge-Kutta method were suitable to the first step of introduction
CUDA into numerical calculation because these consist of simple operations of matrices and
vectors of single precision where actual codes were written in the C++ language. Our experimental
results showed that nuclide burnup calculations with GPU have possibility of speedup by factor of
100 compared to that with CPU.

Key Words: Graphics processors, GPU, GPGPU, CUDA, nuclide burnup

1. INTRODUCTION

The computation time has been increasing for reactor physics calculations where more detailed
models are employed. In order to overcome high computation costs, parallel computing on a PC
cluster is one of easy options to select. In this paper, however, we discuss a different solution,
namely General Purpose computation using on Graphics Processing Unit (GPGPU). Graphics
Processing Unit (GPU) has many multi-processors and allows implicit parallel computing in the
manner of data-parallel paradigm. A comparison of performance of GPU and CPU is shown in
Fig. 1; GPU has great potential for scientific calculations and hardware developing speed is
surprisingly fast. Software development to support GPGPU is also active. In a few years ago,
GPGPU was usually used in the combination with the OpenGL which is relatively difficult since
it, required high programming skills and hardware insights [1]. However GPU programming for

Shota Okui, Yasunori Ohoka and Masahiro Tatsumi

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

2/7

general purpose has been changed after the release of NVIDIA’s CUDA. CUDA is a C-like
language environment that enables programmers to write programs easily to solve complex
numerical problems. CUDA have been applied for neutronics analysis and acceleration of that
was achieved [2]. Therefore one can enjoy GPGPU powered by CUDA with much more gentle
learning curves.

In this work, we tried to accelerate nuclide burnup calculation using the 4th-order Runge-Kutta
method with CUDA as the first step. Its method is easily referred to parallel programming
because equations can be divided in simple operations of matrices and vectors.

Figure 1. Development of GPU and CPU performance [3]

2. GPGPU WITH CUDA

Programmers use C or C++ language for CUDA, NVIDIA provides dedicated compiler - GPUs
adapt for parallel computation because those have many multi-processors. For example, NVIDIA
GeFroce 8800 GTX has 16 multi-processors. Each multi-processor is viewed as multi-core
device that is enable to execute some operates for large data in parallel. Thus, CUDA treats
GPUs as the SIMD processors. CUDA provides means of heterogeneous computing using both
of CPU and GPU. We need to select between GPU and CPU in the each calculation. Commonly
GPU is suitable for the large size calculation which can be treated as parallel computing. Other
calculations with small amount of calculations are executed by CPU. For example, in the burnup
calculation, GPU is used in solving differential equations. Preparation constants or some other
trivial operations and calculations are executed by CPU. Manners of programming for GPU are
somewhat different from one for CPU since architectures found in those processors are quite
dissimilar. GPU is mounted on the video card and has a number of multi processors and four
kinds of memories, these are classified as global memory, shared memory, constant cache or
texture cache. A system bus is involved in the data transfer, memory transfer between CPU and
GPU is necessary. The memory transfer via a system bus, which is the PCI Express x16 in this
case, is much slower compared with calculation speed. Mostly, global and shared memory units
are used for numerical calculation. The global memory can be referred from all multi processors
in a GPU, where access costs quite high because of low bandwidth between the global memory
and processors. Each multi-processor has a shared memory unit which cannot be referred from
other multi-processors; the shared memory is much faster than global memory and can be
recognized as somewhat similar to L1 or L2 cache of CPU. Since the shared memory is not

Study of the acceleration of nuclide burnup calculation using GPU with CUDA

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

3/7

automatically used in CUDA programming, the programmers need to write control of them in
order to retrieve performance of GPU, which make it difficult for programmers to select right
approach and “true” parameters in algorithms.

3. FEASIBILITY STUDY

Comparison of computational performance was done between GPU and CPU; NVIDIA
8800GTX was used for GPU hardware and Core 2 Duo E6600 for CPU. Coding for both of GPU
and CPU was done in C++ where numerical operations were treated in single precision. At first,
product of matrix and vector was explored. The result is shown in Fig. 2. GPU performance is
lower than CPU one because computation load for GPU cannot compensate the cost for memory
transfer. Calculation time of GPU case contains two memory transfer time between CPU and
GPU side before and after its actual computation; firstly, data of matrix and vector are
transferred from CPU to GPU to load into VRAM that is a local memory managed by GPU. The
GPU is initiated to perform matrix-vector product operations with a pre-loaded code fragment
running on GPU within the framework of CUDA. Secondly, vectors calculated from matrix-
vector product are extracted from VRAM to be transferred to CPU via the system bus, which is
PCI-Express x 16 in this case. Since these memory transfer costs much higher than calculations,
we cannot get good performance in this case.

Next, the product of two matrices, AB=C, was explored in order to make clear the relationship
between calculation and memory transfer costs. The result of that is shown in Fig. 3. In this
calculation, two matrices of A and B are transferred to GPU memory before calculation and a
matrix of C are transferred to CPU side after calculation. The GPU performance of this
calculation is better than previous calculation despite large data transfer. Hence, the relationship
between the amount of calculation and memory transfer for above two cases is shown in Table I.
The amount of calculation over memory transfer is about 2 in case of the product of matrix and
vector. In this case, it cannot get the GPU potential because memory transfer cost is much larger
than calculation cost. On the other hand, in case of the product of 2 matrices, the amount of
calculation over memory transfer is 2m/3. GPU exercise its real performance if the matrix size is
adequately large. When we write the CUDA programming, the amount of calculation over
memory transfer is important value to estimate how performance is displayed.

 One should be careful when discussing GPU performance since performance may be much poor
than that by CPU with little amount of data to be processed because of high cost in memory
transfer. Therefore the large amount of data set in a calculation is essential to educe high
performance from GPU. Another noted point is that GPU performance becomes higher as matrix
size is larger. This is because multi-thread computing is fairly and effectively performed utilizing
multi-processors in GPU.

Shota Okui, Yasunori Ohoka and Masahiro Tatsumi

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

4/7

Figure 2. Product of matrix and vector.

Figure 3. Product of two matrices.

Table I. Relationship between amount of calculation and memory transfer.

Product Amount of calculation Amount of memory
transfer

(input, output)

Calculation /
 memory transfer

Matrix and Vector 2m2 m2+m, m ≅ 2
Two Matrices 2m3 2m2, m2 2m/3

*m is the vector length.

Study of the acceleration of nuclide burnup calculation using GPU with CUDA

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

5/7

4. APPICATION OF CUDA TO NUCLIDE BURNUP CALCULATION

Next, as a realistic application, we applied CUDA to nuclide burnup calculation shown in Eq. (1)
which analyzes time dependence of number densities of nuclides, with decay, capture, fission
and (n,2n) reactions. The 4th-order Runge-Kutta method was chosen to solve the differential
equation. The creation of matrix M in the Eq. (2) and resolution of Runge-Kutta method were
computed on GPU. The size of matrix M corresponds to number of nuclides which is about one
hundred or so. However, from the viewpoint of the feasibility study, it needs to enlarge matrix
size to derive high performance from GPUs. Hence we introduced another dimension in the
matrix for spatial meshes. Numbers of meshes in which burnup calculation is performed are
considered in a computation. With enough amount of data set, multi-processors in GPU can be
effectively used.

From the feasibility study, we have to be careful about memory transfer between CPU side and
VRAM. The flow chart of this burnup calculation with CUDA is shown in Fig. 4. At first, The
four kinds of yield matrices, which are decay γd, capture γc, fission γf and (n,2n) reaction γn2n,
and decay constants λ are transferred from CPU to GPU before burnup calculation loop. At the
same time, initial number densities of all nuclides are transferred from CPU to GPU. The number
densities calculated at the each step are stored on the VRAM and stored number densities are
extracted from VRAM to CPU at the end in order to reduce memory transfer latencies. In burnup
calculation, three kinds of reaction rates must be updated by transferring them from CPU to GPU
via PCI-Express bus at every step because neutron fluxes change as materials are depleted. Since
transferred data sets are not matrices but vectors, that cost is relatively small. In this calculation,
these reaction rates treated as constant for the simplified model were transferred to the VRAM at
each step. The amount of calculation over memory transfer become large by the design as
mentioned above.

(1)

(2)

j

j
j
f

ij
f

j
nn

ij
nn

j
c

ij
cj

ij
di

i
aii NRRRNRN

dt

d 22

NN
dt

d
M

Shota Okui, Yasunori Ohoka and Masahiro Tatsumi

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

6/7

Figure 4. Flow chart of the burnup calculation with CUDA.

Comparison on computation time GPU and CPU is shown in Table II where the number of
nuclides is 96. Both codes were written in C++ and treated in single precision. The calculation
time of GPU contains memory transfer time. As the mesh size is larger, GPU performance
becomes higher, up to about 100 times faster.

GPU calculation treats single precision. Hence we compared the difference of GPU single
precision calculation and CPU double precision calculation, in which total time steps is 1000 and
time intervals are 0.01 day. That difference is very small and the absolute value of the error of
the major nuclides is shown in Fig. 5. The error is less than or comparable to 0.01%.

Table II. Processing time on CPU and GPU

Mesh size 200 1000 4000 8000
CPU [sec] 4.63e+1 2.32e+2 1.01e+2 2.03e+2
GPU [sec] 1.15 3.41 10.6 20.0

CPU / GPU 40.3 68.0 95.7 102

Study of the acceleration of nuclide burnup calculation using GPU with CUDA

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

7/7

Figure 5. Difference of number densities with GPU and CPU.

5. CONCLUSIONS

GPGPU would become a remedy for performance in terms of computation speed and its cost.
Future development on hardware and software for GPGPU would consolidate its position for
great success. In this study, computation performance of the basic operations of matrix and
vector using CUDA were verified. And acceleration of burnup calculation was also studied. It
was confirmed appropriate treatment of large number of threads and small amount of memory
transfer between CPU and GPU is indispensable for good performance. In the nuclide burnup
calculation, GPUs performance was accelerated by the factor of 100 compared to that by CPUs.
If you put in several hundred dollars for GPUs, there is a possibility that numerical computation
is one hundred times faster. Furthermore, by using the GeForce GTX280 which is the latest
product of the NVIDIA and has about twice calculation performance than 8800GTX used in this
paper, more efficient is expected.

REFERENCES

1. Y. OHOKA and M. TATSUMI, “Study on the Acceleration of the Neutronics Calculation

Based on GPGPU,” Proc. Int. Topical Meeting on Mathematics & Computation and
Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, California, April
15-19, 2007, American Nuclear Society (2007) (CD-ROM).

2. Yasuhiro Kodama, Akio Yamamoto, Yoshihiro, Yamane, et. al."Fast Computation of the
Neutron Transport Calculation with a Graphic Processing Unit (GPU)," Trans. Am. Nucl.
Soc. vol. 99(2008)

3. “NVIDIA CUDA Compute Unified Device Architecture-Programming Guide (Version 2.0)”,
http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programmi
ng_Guide_2.0.pdf (2008)

