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ABSTRACT 
 

We have developed, implemented, and tested a new linear-discontinuous Galerkin cut-cell 
discretization for the Sn equations in R-Z geometry.  This approach represents an alternative to 
homogenization in rectangular spatial cells containing a material discontinuity (referred to as mixed 
cells).  A line is used to represent the boundary between the two materials in a mixed cell converting 
a rectangular mixed cell into two non-orthogonal, homogeneous sub-cells.  The linear-discontinuous 
Galerkin spatial discretization is used on all of the rectangular cells as well as the non-orthogonal 
sub-cells.  The method is described and computational results are presented that demonstrate 
second-order accuracy in multi-material problems with curved material interfaces.  Additionally 
some evidence is provided that indicates that the cut-cell method is more computationally efficient 
than employing homogenization.  
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1. INTRODUCTION 
 
The purpose of this summary is to describe a new linear-discontinuous Galerkin cut-cell 
discretization for the Sn equations in R-Z geometry.  Cut-cell methods are commonly used in 
computational fluid dynamics [1] but have found little application in radiation transport. Our 
approach represents an alternative to homogenization in rectangular spatial cells containing a 
material discontinuity (referred to as mixed cells).  A line is used to represent the boundary 
between the two materials in a mixed cell converting a rectangular mixed cell into two non-
orthogonal, homogeneous sub-cells.  A single cut-cell is illustrated in Fig. 1. The linear-
discontinuous Galerkin spatial discretization is used on all of the rectangular cells as well as the 
non-orthogonal sub-cells.  There are three main advantages to our approach relative to the use of 
unstructured meshes.  First, a linear representation for an interface between materials offers the 
potential for second-order accuracy even when the interface is curved.  Second, the significant 
advantages for parallel computation on rectangular meshes relative to unstructured meshes are 
retained for a cut-cell mesh. Third, cut-cell meshes are far easier to generate than general 
unstructured meshes. One could obviously treat multiple material interfaces within a single cell 
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using the cut-cell approach, but we restrict ourselves in this study to two-material interfaces since 
this suffices to demonstrate the efficacy of the approach.   
 
The remainder of this summary is organized as follows.  First we describe the basic equations 
associated with our method and the details of its implementation.  Then we present computational 
results comparing our approach with homogenization.  Finally, we present conclusions regarding 
the efficacy of our method.   
  

2. THE CUT-CELL METHOD 
 
Fig. 1 depicts a rough representation of a fuel pin cell arising in the modeling of nuclear reactors.  
We note that any orthogonal meshing of this geometry results in cells that contain material 
interfaces.  This is an example of where interface reconstruction is needed.  We proceed by 
considering how such a pin cell would be handled by our new method. 
 
 

Vδ
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2 2V σ

 
 
 Figure 1.  Typical Cut-Cell Depiction 
  
 

2.1. Mesh Generation 
 
Our cut-cell method begins by meshing the pin cell with a rectangular grid with no attention paid 
to the presence of material interfaces.  This base grid is then further subdivided into cut-cells in 
regions where a material interface passes through the base grid.  The material interfaces are then 
represented as linear segments within each cut-cell.  This approach results in the classical 
rectangular mesh with a small number of cells having substructure defined by the union of two 
smaller polygons.  For this work we restrict ourselves to a single level of subdivision.  Such a 
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restriction results in cut-cells composed of a combination of quadrilaterals, triangles, and 
pentagons.   
 
The diagram in Fig. 1 shows the resulting substructure that arises from representing a curved 
material interface by a linear segment.  The linear segment is located so that it coincides with the 
actual material interface at two points.  These two points are located where the actual interface 
intersects the faces of the mixed cell.  There are obviously other ways to locate the segment, but 
we judged this approach to be the least problematic.  We make note of the sliver of volume Vδ  
lying between the true interface and the linear representation.   

2.2. Sliver Treatment 
 
The inability of the linear mesh to conform to curvilinear boundaries results in the presence of 
cutcells whose underlying polygonal elements are not truly homogenous.  Typically, one of the 
polygonal sub-cells will be homogenous and the other will not be.  There exist at least 3 
reasonable ways to handle this.  The traditional approach used in fluid dynamics applications is to 
preserve the total mass of each material contained in a cut-cell.  For particle transport this results 
in modification of the macroscopic cross sections in each sub-cell.  This cell-wise approach is 
fairly accurate but is noisy.  A less noisy approach is to modify the density within each 
homogeneous material region to preserve the total mass in that region.  This approach is much 
smoother because the relative change required in the mass of a region is much smaller than the 
relative change in the masses of individual sub-cells. One more approach to handling the sliver 
volume is to simply ignore the sliver and accept the associated meshing error.  With increasing 
spatial refinement the associated meshing error is reduced. 
 
 Our experience indicates that the finite element treatment itself determines the order of 
convergence of a method, while the sliver treatment merely affects accuracy.  Although not 
universally most accurate, a region-wise mass preservation treatment is quite accurate and not 
subject to the degree of noisiness seen in a cell-wise mass preservation approach. 

2.3. Numerical Discretization 
 
The linear-discontinuous Galerkin  equations with weighted diamond angular discretization [2] 
may be written for a weighted direction on an arbitrary polygon as: 
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Here the angular index is denoted by , and the inflow angular edge index is m 1 2m − .  The 
angular flux of particles associated with direction m  is denoted by mψ .  The direction of particle 
flight is denoted by the unit vector mΩ and the sides of the arbitrary polygon are denoted 
by { }1...s = S  with corresponding outward unit normals sn .  The basis functions are denoted 
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by { }0 , ,i rb b b b= z , the total cross section is denoted byσ , the total source term is denoted by , 
and the terms

mQ

mβ  and mγ  are angular differencing coefficients. 
 
The spatial leakage terms are separated on each side of the equation with the inflow fluxes coming 
from the upstream closure.  The angular flux as a function of the spatial variables and is 
expanded as a combination of basis functions and unknown coefficients: 

r z

 
 ( ) 0

0, ( , ) ( , ( , )r z
m m z mr z b r z b r z b r z)r m
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ψ ψ ψ ψ= + +  . (2) 
 
By substituting this linear expansion for the angular flux into Eq. (1) one obtains a 3x3 matrix 
equation on a polygon.  This equation may be solved for the unknown angular flux coefficients 
given upstream spatial inflow fluxes and an angular inflow flux.  We solve the starting direction 
flux equations to obtain the initial angular inflow fluxes on each angular quadrature level. This 
space-angle discretization is used for all the cells associated with our cut-cell method.  
 
 

3. COMPUTATIONAL RESULTS 
 
In order to investigate our cut-cell method we generate the required cut-cell meshes by modeling 
1-D spherical geometry using a 2-D RZ mesh.  This approach allows us to run spherical shells that 
generate cut-cell meshes at the annuli boundaries.  We present results for both a manufactured 
solution and a k-eigenvalue problem. 
 

3.1. Manufactured Solution Test Problem 
 
In order to verify the correctness of our implementation as well as evaluate the performance of our 
method, we use the method of manufactured solutions.  Manufactured solutions start with an 
arbitrary solution to the transport equation that may be tailored to suit particular purposes.  This 
solution is then substituted into the transport equation to find the inhomogenous source giving rise 
to that solution.  The result is then used as input to a transport code.  The known solution may then 
be compared against that obtained by the numerical method.  In this way the accuracy and order of 
convergence of the method may be determined. 
 
For our purposes we consider a 1-D spherical manufactured solution containing two spatial kinks 
(discontinuities in the spatial derivative) in the angular flux that simulate the effect of a material 
discontinuity. We choose an angular flux that is piecewise defined on a spherical domain with one 
linear component and one quadratic component.  The angular flux for this manufactured solution 
in terms of the spherical spatial variable x  is: 
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We note that this solution satisfies the 2-D RZ boundary condition along the z-axis as well as 
vacuum boundary conditions.  For this test problem we generate the source for this manufactured 
solution using a uniform, purely absorbing medium of 11cmσ −=  with dimensions 0.5Ax cm=  
and 1.0Bx cm= .  
 
The presence of curved spatial kinks in the solution is problematic for quadrature evaluation of the 
inner products appearing in Eq. (1).  Nonetheless we choose to employ standard spatial 
quadratures to evaluate them.  More specifically, a standard 9-point Gaussian quadrature set is 
used on quadrilaterals, and a standard 4-point set is used on triangles. All pentagonal elements are 
integrated via decomposition into triangles.  While the use of standard quadratures introduces a 
slight amount of noise in the solution for this particular problem, our computational results 
indicate that they are sufficiently accurate.   
 
We use this manufactured solution to evaluate the convergence rate of the scalar flux for this test 
problem.  For this problem we use the  Gauss-Chebyshev triangular quadrature set in angle and 
make no accounting for the volume sliver.  Figure 2 gives the rate of convergence of a cell-wise 
evaluated  norm of the Sn scalar flux for this manufactured solution. It can be seen from Fig. 2  
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that one obtains second-order convergence for the  norm of the scalar flux using the cut-cell 
method.  In comparison, the effect of homogenizing the mesh results in an order of convergence of 
approximately 1.5.  In addition, the cut-cell method is significantly more accurate for a given 
mesh size.  Considering the coarsest mesh shown in Fig. 2, one may see that even when viewed on 
the basis of total unknowns, the cut-cell method yields an error approximately 4.5 times lower 
than that given by a homogenized mesh containing the same number of unknowns.  Although we 

2L

Figure 2.  Scalar Flux Convergence in Spherical Manufactured Solution 
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show results for only a single problem here, our experience has shown the cut-cell method to be 
universally more accurate for all problems considered. 
 

3.2. Eigenvalue Test Problem Convergence 
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cm

Our new cut-cell method was also tested on a k-eigenvalue calculation consisting of a spherical 
fuel region surrounded by a spherical shell moderator region.  The fuel region has thickness 

, and has material properties 0.25fuelt = 11fuel
t cmσ −= , 10.1fuel

s cmσ −= , and 11.0fuel
f cmνσ −=

12mod
t cmσ

.  

The moderator region has thickness , and has material properties 0.25cmmodt = −=  and 
.  This system is modeled using 2-D cylindrical geometry that results in the cut-cell 

treatment at the fuel/moderator interface as well as at the moderator/vacuum interface.  For this 
test problem we use the  Gauss-Chebyshev triangular quadrature set in angle and employ a 
region-wise mass preservation technique.  The convergence of the eigenvalue is calculated using a 
solution obtained on a very fine spatial mesh using the same angular quadrature set.  The results of 
the eigenvalue study are depicted in Figure 3.   

10.8mod
s cmσ −=
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Figure 3.  Convergence of Eigenvalue in Spherical Test Problem  
 
This figure indicates that the cut-cell method is second-order convergent for the eigenvalue.  The 
actual slope of the trend is slightly larger than 2 because the results are plotted against the mesh 
size for the orthogonal base grid.  In comparison, homogenization has an effective order of 
convergence of approximately 1.75.  The global nature of the eigenvalue as well as the location of 
the interface explains a slightly better order of convergence for homogenization as compared to 

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009 
 



DFEM Sn Cut-Cell Discretization 
 
the scalar flux convergence for the manufactured solution.  The cut-cell method is again 
significantly more accurate than homogenization.  Calculations depicted in Figure 3 for the two 
finest meshes correspond to base orthogonal grids of 160x320 and 320x640 cells.  We note that 
the cut-cell method yields a more accurate result on the 160x320 grid than does homogenization 
on the 320x640 grid.  

3.2. Eigenvalue Test Problem Computational Efficiency 
 
Though we make no attempt at a rigorous cost analysis for the cut-cell method, we present a rough 
comparison of the cut-cell method with homogenization on the basis of computation time required 
to achieve a solution to a given precision.  To this end we obtain solutions to the eigenvalue 
problem on several meshes.  We also tally the processor time required to obtain those solutions.  
For this work both methods were implemented using a 3.0 ghz Intel Wolfdale processor with 8gb 
of memory.  The code itself is single-threaded and written in Fortran 90 compiled using the default 
speed optimized profile on the Intel Fortran 10.1 compiler.  The timing is taken from the processor 
clock itself and is measured from the start of meshing to the point at which convergence criteria on 
the scalar fluxes and eigenvalue is obtained.  The results are compiled in Table I.   
 

 
 Table I. Eigenvalue Test Problem Processor Time 
 
 

Base Grid Number of Cutcells Abs(e_k) Time (sec) Abs(e_k) Time (sec)
10x20 40 9.71E‐03 0.36 2.75E‐03 0.56
20x40 76 1.87E‐03 1.08 1.37E‐03 1.42
40x80 156 6.39E‐04 4.56 2.86E‐04 5.16
80x160 316 2.00E‐04 18.45 6.17E‐05 20.55
160x320 636 5.94E‐05 79.51 1.39E‐05 80.11
320x640 1276 1.64E‐05 332.64 3.77E‐06 339.89
640x1280 2556 4.53E‐06 1444.24 9.43E‐07 1435.68

Homogenization Cut‐Cells
 
 
 
 
 
 
 
 
 
 
 
For the eigenvalue test problem that is considered, the cut-cell method is more computationally 
efficient on all but the coarsest of meshes.  At the fundamental level the cut-cell method incurs 
additional computational cost to set up data structures for sweeping on non-orthogonal grids as 
well as the additional cost incurred in performing integrations on general polygons.  However, the 
inability of homogenization to accurately represent discontinuities in cross sections and 
corresponding kinks in the angular flux solution severely limits its accuracy.  Because of the 
nature of the spherical shells being modeled, the resulting number of cut-cells scales linearly in the 
characteristic mesh size , while the total number of cells scales as .  This means that for even 
fairly coarse meshes the computation is quickly dominated by sweeping on the rectangular grid.  
This combined with the inaccuracy of homogenization makes the cut-cell method more accurate 
per unit computational cost.   

h 2h
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4. Conclusions 
 
The new linear cut-cell method shows significant promise.  The method provides a relatively easy 
implementation of a second-order interface reconstruction technique that may be implemented in 
existing codes.  The method has been shown to be significantly more accurate than 
homogenization in terms of the base orthogonal grid size as well as in terms of the total number of 
unknowns utilized.  Additionally, there is evidence that the method is also substantially superior to 
homogenization in terms of accuracy per unit computational cost.  Finally, it is worth noting that 
the method has the significant advantage of maintaining an underlying rectangular grid which 
greatly facilitates the use of a parallel solution algorithm.   
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