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ABSTRACT 

 
The integral form of the discrete ordinates equations involves a system of equations that has a 

large, dense coefficient matrix. The serial construction methodology is presented and properties 

that affect the execution times to construct and solve the system are evaluated. Two approaches for 

massively parallel implementation of the solution algorithm are proposed and the current results of 

one of these are presented. The system of equations may be solved using two parallel solvers—

block Jacobi and conjugate gradient. Results indicate that both methods can reduce overall wall-

clock time for execution. The conjugate gradient solver exhibits better performance to compete 

with the traditional source iteration technique in terms of execution time and scalability. The 

parallel conjugate gradient method is synchronous, hence it does not increase the number of 

iterations for convergence compared to serial execution, and the efficiency of the algorithm 

demonstrates an apparent asymptotic decline. 

 

Key Words: neutron transport, discrete ordinates, parallel, block Jacobi, conjugate gradient 

 

 

1. INTRODUCTION 

 

Parallel algorithms for solving the transport equation have been widely discussed and 

implemented for approximately 25 years. The discretized transport problem was decomposed in 

one or more of the independent phase-space variables, data was distributed among the 

participating processors, and the transport equation was solved concurrently. Summarily, 

extensive literature is available for energy [1], angular [2], and spatial [3–6] domain 

decompositions, and further research demonstrated the utility of a combination of domain 

decompositions [7–9].  

 

The value of modern parallel algorithms is typically measured by speedup and scalability [10]. 

Speedup refers to the ratio of the serial execution time to the parallel execution time on multiple 
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processing units. Scalability is a measure of how many processing units can be conceivably used 

to solve a decomposed problem while maintaining reasonable parallel efficiency. Further, 

algorithms exhibiting scalability are desired to do so with a speedup that warrants the additional 

costs associated with deploying computing power. 

 

Energy domain decomposition and angular domain decomposition both offer straightforward 

means to solve the neutron transport equation in parallel. However, each of these methods is 

limited in scalability. Energy domain decomposition is limited to the number of energy groups 

and is asynchronous, and angular domain decomposition is limited to the number of ordinates in 

the angular quadrature set and is synchronous only in non-curvilinear coordinate systems. [1–2] 

 

Spatial domain decomposition algorithms were sought to achieve greater scalability. Not 

surprisingly, the number of cells in a transport problem often significantly exceeds the numbers 

of groups or discrete ordinates. Various schemes have been devised to distribute cells of a larger 

spatial region across several computing nodes and couple them via interface angular fluxes.  

 

Early schemes divided the region into sub-domains of varying shapes for Cartesian [3] and 

cylindrical [7] geometries. The transport equation is solved over all cells in the sub-domains, and 

all sub-domains are solved in parallel. The angular fluxes at the sub-domain interfaces are shared 

with neighbors to be used as incoming boundary conditions for the next iteration. The process is 

repeated until convergence.  

 

In the 1990s, considerable effort was focused on the diagonal plane sweep or wavefront method 

[4–6]. Similar to a mesh sweep the outward angular fluxes for the starting cell are passed to the 

three adjacent cells in three-dimensional geometry. In the next three cells the cell-centered and 

outgoing angular fluxes are computed independently of, and in parallel with each other. 

Outgoing angular fluxes are passed to their neighbors. Directions are pipelined for additional 

computational efficiency. The wavefront method requires no alteration (except communication) 

from a serial mesh sweep, making it an intrinsic domain decomposition [5, 11]. 

 

Analysis of this scheme uses a two-dimensional computer cluster topology and has demonstrated 

considerable speedup on thousands of processors [4–6] because communication time was a small 

fraction of total execution time; the cumulative grind time was the dominant factor in such 

calculations. More recently, Humbert [12] applied the wavefront method to a three-dimensional 

computer topology. Humbert concluded that very good speedup could be attained for hundreds of 

processors. However, the method is not scalable as increasing the number of processors increases 

the amount of time spent in communication. 

 

Other notable research involves the use of Krylov subspace methods, namely the conjugate 

gradient (CG) method, to replace iterative procedures of neutronics equations. Böhm, Brehm, 

and Finnemann [13] used a parallel CG solver for diffusion equations. Gupta and Modak [14] 

demonstrated how a discrete ordinates problem with the diamond difference scheme could be 

posed as a CG problem, replacing the source iteration (SI) scheme. Chen and Sheu [15] 

investigated the use of preconditioners with the CG method for neutron transport problems.   
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The motivation for this work is to develop a new algorithm that solves the transport equation in a 

massively parallel environment. Since grind time is still the dominant component of transport 

solvers [16], this work proposes an alternate methodology that abandons the mesh sweep and SI 

schemes. We discuss new strategies for the construction of the discrete form of the transport 

problem and the determination of the scalar flux solution from the resulting system of linear 

equations via parallel algorithms. We believe our algorithms, by eliminating the costs of highly 

repetitive mesh sweeps, can reduce overall execution time for very large problem sizes in 

massively parallel computing environments. 

 

This paper is divided into the following sections. Section 2 briefly introduces the discretized 

transport equations used in our analysis. Section 3 describes some of the properties of our system 

of equations and how varying parameters affect problem size. Section 4 discusses two distinct 

paths that one can take to solve for the scalar flux distribution in parallel. Section 5 presents the 

results attained thus far for composing and solving the system of equations in parallel. Section 6 

discusses the conclusions drawn from our work and outlines the future work to be performed. 

 

2. THE AHOT-N METHODOLOGY 

 

For this study we adopt the arbitrarily high order transport nodal (AHOT-N) equations [17, 18] 

as the starting point for our new algorithm. These equations can be easily implemented in a mesh 

sweep of an SI scheme using a weighted diamond difference (WDD) structure. Presented here 

are key equations for three-dimensional geometry as an introduction to the methodology and to 

introduce the notation. Readers are directed to the references for more detailed derivations. 

2.1. The AHOT-N Equations 

 

In AHOT-N the spatial distribution of the flux over a computational cell is computed as a 

truncated series of normalized Legendre polynomials. The energy group index has been 

suppressed. 
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The moments for the y- and z-directional edges, ψn,i,j,k,t,y,v(±bj) and ψn,i,j,k,t,u,z(±ck), respectively, 

can be defined analogously to Eq. (2). The discrete ordinate, x-, y-, and z-dimension indices are 

denoted with n, i, j, and k, respectively. 2ai, 2bj, and 2ck are the x-, y-, and z-dimensions of the 

cell, respectively. The continuous angular flux distribution in the direction of n is ψn(x,y,z). The 

functions Pt(x), Pu(y), Pv(z) are the t
th

, u
th

, and v
th

 orders, respectively, of the Legendre 

polynomial, normalized over the range of the corresponding independent variables. 
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In AHOT-N the spatial expansion order of all fluxes in all dimensions ranges from 0 to Λ. Four 

sets of equations are needed to describe the flux for the increasing spatial order. The first set of 

(Λ+1)
3
 equations expresses the conservation of angular flux spatial moments over the cell. 
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sg is the signum function and acts on the x-, y-, and z-components of the angular direction 

cosines. The i and o superscripts refer to the incoming and outgoing angular flux edge moments, 

respectively. All the summations have an increment of two, denoted as Σ
*
. The summations’ 

starting indices are defined with o(u)=[(u+1)mod(2)] (analogously for other directions). The 

macroscopic cross sections are denoted by σ
t
i,j,k for total and as σ

s
i,j,k for isotropic scattering. The 

scalar flux and fixed source are i,j,k,t,u,v and Si,j,k,t,u,v, respectively. The epsilon terms are defined 

analogously, and for the x-direction specifically, it is 
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The next three sets, each comprising (Λ+1)
2
 equations, are weighted difference formulas to relate 

angular flux spatial moments within the cell to the transverse-moments of the angular flux on 

cell x-, y-, and z-faces. The x-face equation is 
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The spatial weights, e.g. αn,i,j,k in Eq. (5), have been defined by Azmy [17] as a series of terms, 

depending on the spatial order, of the ratio between εn from Eq. (4) and σ
t
. 

 

The calculation for each computational cell can be composed of a system of equations from Eqs. 

(3) and (5). One coefficient matrix operates on a vector for the angular flux moments within the 

cell and outgoing at the faces: the unknown quantities. Another coefficient matrix operates on the 

known neutron sources—scattering and distributed—and the incoming angular flux cell-face 

moments. A new matrix Γ is formed by inverting the unknown vector’s matrix and multiplying it 

with the known vector’s matrix. Then the problem for each cell is simplified to the form x=Γb. 

This system has (Λ+1)
3
+3(Λ+1)

2
 equations. 
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(6) 

 

The moment indices are not necessary for the sub-vectors which are composed of all moments. 

The x, y, and z superscripts in the equation indicate the dimension of interest in the equation; x, y, 

and z superscripts in the sub-matrices of Γ refer to the plane of integration from Eq. (2). The 

scalar flux is given the superscript p to denote it as an iterate in the SI scheme to determine a new 

scalar flux solution from its previous value.  

2.2. Using the Iteration Jacobian Matrix to Solve for the Scalar Flux 

 

In the SI scheme one solves for the left hand side (LHS) angular flux moments of Eq. (6) for all 

angles and uses the angular quadrature to determine a new scalar flux. 

 

 SA psv    (7) 

 

v
 is the new scalar flux iterate and S is the source, both vectors. σ

s
 is the self-scattering cross 

section matrix, and A is a coefficient matrix whose elements are constructed from the sub-

matrices of the Γ-matrix in the discretized transport equation, Eq. (6). By assuming vacuum 

boundary conditions for the domain, anisotropic sources that would otherwise appear on the RHS 

are neglected. Upon iterative convergence of Eq. (7), successive iterates of the scalar flux are 

equal in the iterative limit, i.e. the solution ∞
 satisfies the following relation [10], 

 

  ASAI s 1    (8) 

 

where I is the identity matrix. In the SI scheme A is never constructed, and the solution is 

computed from successive mesh sweeps instead of solving the system of equations in (8). 

 

The impetus to our new approach begins with construction of A, followed by explicitly solving 

the system in Eq. (8). First it is recognized that this matrix is the iteration Jacobian of Eq. (7). 
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One must perform a single mesh sweep along all discrete ordinates in the angular quadrature to 

construct A. Instead of computing the cell-centered and outward angular flux moments given the 

incoming fluxes, the cell-moments of the angular flux of one node are coupled to the cell-

moments of the scalar flux in all upstream cells for a specific discrete ordinate. Ultimately the 
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scalar flux spatial moments in any given cell will be related to the scalar flux spatial moments in 

all other cells. By differentiating the AHOT-N/WDD system of equations (6) with respect to p
, 

one can demonstrate the aforementioned coupling. The flux moment indices are suppressed and 

each equation represents the full range of flux spatial moments. 
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(10b) 

 

The y- and x-direction equations are written analogously to Eq. (10b). The first term in each 

expression equals zero unless i, j, k = i’, j’, k’ because no formulaic relation exists among the 

previous iterate of scalar flux moments of all the cells. On the other hand, the incoming angular 

flux moments at the faces of a given cell are equal to the outgoing angular flux moments from 

the three adjacent upstream cells. Thus the three incoming angular flux moment terms in each 

equation must be evaluated for the cell’s upstream neighbors. 

 

We define the final three equations as matrices whose elements are accumulated during the mesh 

sweep. At each cell in the sweep, we compute the coupling for the three adjacent downstream 

cells to all the cells currently considered in the sweep. 
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These matrices are composed of blocks at each upstream cell i’, j’, k’; each block’s dimensions 

are (Λ+1)
2
×(Λ+1)

3
. The angle index is suppressed because the mesh sweep in one angle is 

independent from all others. However, the angle manifests itself in direction cosines used to 

compute the γ sub-matrices as well as the progression order in the sweep.  

 

From Eqs. (10) and (11) one can observe the relation between adjacent cells. 

 

        
yza

kji

s

kjikjikji

xza

kji

s

kjikjikji

xya

kji

s

kjikjikji XYZ ,,,,,,,,1,,,,,,,1,,,,,,,1,, ,,     (12) 

 

The derivatives involving the incoming angular flux moments in Eq. (10) may be substituted 

with the adjacent cells’ outgoing expressions as in Eq. (11). Repeating this for all upstream cells 

ultimately yields the following formulae to recursively update the X, Y, and Z matrices from all 

the non-adjacent upstream cells. 
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(13c) 
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At each cell the values for X, Y, and Z from all upstream cells have been computed for that cell. 

The A matrix is updated using these values. The final three terms in Eq. (10a) are computed. 
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Further, one computes the first term in Eq. (10a). 
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The A matrix is updated with Eqs. (14) and (15) lastly by summing the contributions from all 

N(N+2) angles in the quadrature set. 
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The A blocks updated with Eq. (16) have dimensions (Λ+1)
3
×(Λ+1)

3
. The locations of the blocks 

are determined by the indices on A. Diagonal blocks of A result from the expression given by Eq. 

(15), whereas the off-diagonal blocks result from expression given by Eq. (14); for downstream 

cells the LHS equals zero in Eq. (14) and thus has no effect in Eq. (16). 

 

The A matrix is made symmetric easily. Each block of A described by Eq. (16) relates the flux in 

one cell caused by the flux in another. Because we assume the scattering and fixed sources are 

isotropic, the reciprocity relation holds: the flux at some point r1 caused by an isotropic source at 

point r2 is equal to the flux at r2 caused by the isotropic source at r1. To make A symmetric all 

elements in the set of (Λ+1)
3
 equations of each spatial cell are multiplied by three factors for 

reciprocity: scattering cross section, cell volume, and a flux moment factor. 

 

Symmetric matrices have advantages over their non-symmetric counterparts. If solving the 

system in Eq. (8) directly, Cholesky factorization may be applied, improving performance. 

Furthermore, when symmetric systems are also positive definite, the conjugate gradient (CG) 

method may be employed. Other Krylov subspace methods apply for coefficient matrices that are 

not symmetric positive definite (SPD). However, CG is the best choice when the system is SPD. 

 

No analytic method has been determined yet to prove the positive definiteness for a general case 

of any problem size and material properties. However, experience for many test cases and a 

range of parameters has shown no convergence difficulties, and the computed solution has 

consistently agreed within the convergence criterion with the solution determined directly with 

Gaussian elimination. 

 

 



R.J. Zerr and Y.Y. Azmy 
 

2009 International Conference on Mathematics, Computational  

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009 

8/15 

 

 

3. PROPERTIES AFFECTING PROBLEM SIZE AND SOLUTION 

 

We have implemented the three-dimensional AHOT-N/WDD solution methodology in a serial 

computer code to test accuracy and gather information about how the methodology is affected by 

various problem parameters. The AHOT-N/WDD equations may be solved using the SI 

approach or using the A iteration Jacobian matrix and Eq. (8). In the latter case, once the matrix 

is constructed and made symmetric it can be solved directly with the LAPACK subroutine 

DPOSV [19] or with CG iterations. Several expected relations between serial execution time and 

variable problem parameters have been confirmed by our research and are briefly highlighted 

here. 

 

For brevity we define the number of cells as M. Refining the spatial mesh for a sample problem 

increases M while keeping fixed the overall physical dimensions of the problem. The number of 

SI and CG iterations is insensitive to M. SI execution times grow linearly with M, but CG time 

per iteration grows like M
2
 because of the larger matrix and inner products. Additional cells 

require an additional row and column in A, and matrix construction and direct solution times thus 

grow like M
2
 and M

3
, respectively.  

 

Raising the angular quadrature order for the problem also has straightforward consequences. The 

number of source iterations is insensitive to increasing the total number of discrete ordinates (N 

for brevity), but the SI execution time per iteration grows linearly with N. Constructing A also 

grows linearly with N. However, CG iteration time and direct solution time are unaffected since 

the matrix size does not change. 

 

The scattering ratio of a material is adjusted by changing the scattering cross section while 

keeping the total cross section fixed. This will not affect the size of A, the direct solution time, SI 

time, or CG iteration time. The SI scheme displays a markedly slow convergence rate in highly 

scattering media. The CG method also requires a greater number of iterations when the scattering 

ratio of the materials increases and approaches unity, but the effect is considerably smaller. 

 

4. COMPOSING AND SOLVING THE SYSTEM OF EQUATIONS IN PARALLEL 

 

A is large and dense; it is a square matrix with dimension M×(Λ+1)
3
. Both storing a large matrix 

and solving its system serially are computationally prohibitive in large applications. 

Consequently, this technique generally is not competitive for serial implementation. However, 

we propose that the solution of the scalar flux moments can be solved on a parallel system with 

two different approaches designed to reduce per processor memory requirement and execution 

time.  

 

Ultimately, our new approaches seek to be competitive with SI by avoiding the repetitive mesh 

sweeps and the costly grind time associated with them. The A matrix described in Sec. 2 is 

independent of the scattering source. Neglecting any change in cross sections that would 

accompany decay chain calculations, A needs to be constructed only once at the beginning of a 

calculation and multiplied with the in-group source. The scalar flux moments are then computed 



Parallel Integral Discrete Ordinates Solution 

 

2009 International Conference on Mathematics, Computational  

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009 

9/15 

 

by solving the algebraic system comprising Eq. (8). Two approaches to parallelizing this general 

methodology emerge. 

4.1. Spatially Decomposing the Full Problem into Sub-Domains 

 

In the first approach the overall region is divided into several sub-domains. This method is 

similar to early spatial domain decompositions described in Sec. 1. Each sub-domain is treated as 

an independent problem. We compute the scalar flux moments for all cells in the sub-domain. 

Using this information, we then compute all the outgoing angular flux moments at the 

boundaries of the sub-domain. The outgoing angular flux moments are passed between adjacent 

sub-domains in an iterative fashion. The exchanged data package is a set of boundary conditions 

for a new calculation to compute the updated scalar flux distribution within the sub-domain. An 

iterative process takes place until convergence of the cell-average, i.e. zeroth moment, of the 

scalar flux is achieved. Spectral properties of the iterative process have yet to be investigated for 

this scheme. 

 

Two operators are necessary for this approach. They can be pre-computed only once and 

concurrently among all processes. To compute the scalar flux distribution for the sub-domain, we 

must account for the dependence of the fixed (isotropic) source and the anisotropic boundary 

conditions: ϕ = Φ(S,ψin) = Φ1S+ Φ2ψin. In the case of vacuum boundary conditions, the second 

term is dropped and the first term is equivalent to the RHS of Eq. (8). The second operator 

computes the outgoing angular flux moments at the edges of the boundary cells from the 

computed scalar flux spatial moments, source, and boundary conditions: ψout = Ψ(ϕ,S,ψin). 

These operators still involve large matrices whose order grows quickly with the number of 

spatial cells, O(M
2
), but partitioning the full region into sub-domains allows one to greatly 

reduce per processor memory and/or allows for a much larger problem size.  

4.2. Parallel Construction and Storage of A with Parallel Solvers 

 

In the second approach, the A matrix is composed and solved in parallel directly. Angular and 

spatial domain decompositions already demonstrate techniques capable of parallelizing the mesh 

sweep. Angular decomposition can only scale to hundreds of processors for most realistic 

applications. Spatial decomposition scales higher, but it does so at the cost of increased 

communication and processor idleness that could inhibit the parallel efficiency when applied to 

only a single sweep over all angles. Moreover, the unique coupling structure of the matrix may 

lend itself to a more suitable, massively parallel algorithm to construct A. Solving the system of 

equations in parallel can be accomplished in several ways, including the Block Jacobi (BJ) and 

parallel CG [13, 20] methods. Research is still ongoing to develop a massively parallel algorithm 

for the construction of A. 

 
4.2.1. The parallel Block Jacobi method 

 

In BJ each process is assigned a block of the matrix whose order is determined by the total 

number of equations divided by the selected number of blocks, assuming the quotient is an 

integer value. Moreover, the processes are assigned the corresponding block-size portions of the 

solution and right hand side (RHS) vectors. Each process inverts its owned diagonal block and 
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stores the result. In parallel each process multiplies an off-diagonal block by its owned solution 

sub-vector and passes it to the next process. Repeating this step and combining the sub-vectors 

P−1 times, where P is the number of processes, leaves each process with the sub-vector needed 

to complete its own RHS update. Once the RHS sub-vector is multiplied by the saved inverted 

diagonal block, each process will have computed its portion of the new scalar flux iterate. 

Clearly BJ is an asynchronous decomposition. 

 
4.2.2. The parallel conjugate gradient method 

 

The parallel CG solution follows the same sequence of steps as a serial CG solution, except 

matrix-vector multiplications and inner products are performed concurrently to reduce execution 

time. To compute the scaling factors for the search direction and solution vectors, the inner 

product of the residual with itself is performed in parallel and the results are reduced, summed, 

and broadcast to all participating processes. At the end of a given iteration, the search direction 

sub-vectors owned by individual processes are broadcast to the set of participating processors in 

a ring topology so that each process has the full search direction for the next iteration. CG 

parallelization is synchronous; hence it has the benefit of not degrading the iterative convergence 

rate of serial calculations. The parallelization penalty comprises communication of the residuals’ 

inner products and the search direction sub-vectors to other processes, but this is balanced with 

the benefits from reduced execution time due to concurrency. 

 

5. COMPUTATIONAL RESULTS 

 

Thus far our research has focused on the approach outlined in Sec. 4.2. In this section, measured 

performance via numerical experiments is presented, related to solving the system of equations 

with the BJ and CG schemes. The goals of these experiments are to verify the parallel algorithms 

and to identify challenges to achieving good parallel performance. The message passing interface 

(MPI) is used to implement all parallel instructions. 

 

Test runs were performed on the LION-XO distributed memory cluster at Penn State University 

[21]. LION-XO does not run in dedicated mode, and resource contention has been observed to 

have serious impacts. Users running parallel jobs compete for bandwidth over the network and 

through the switches and for memory and access to the memory. LION-XO is comprised of 132 

computing nodes. 40 compute nodes are dual AMD Opteron processors rated at 2.4 GHz. The 

other 92 nodes are quad AMD processors rated at 2.6 GHz. All nodes are connected by a gigabit 

Ethernet switch and an Infiniband network. MPI jobs on LION-XO are limited to 16 nodes and 2 

processors per node. We used only the dual processor machines to reduce the number of network 

communications and thereby the total communication time. These nodes have 8 GB of memory. 

 

AMD Opteron machines have non-uniform memory access (NUMA) designs. For nodes with 

two processors, each processor has its own memory controller and a directly connected physical 

memory set. Communication with other memory sets is performed over a HyperTransport link. 

There is no policy on LION-XO for how the memory of a particular job is allocated to the 

physical memory space. 
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Numerical experiments’ results are provided for four one-group test cases of AHOT-N order 

zero, Λ=0, employing the parallel BJ and CG methods. All problems use a 20×20×24 Cartesian 

mesh, two materials, and a fixed source distribution. Table I provides further information about 

the cross section data and the fully symmetric angular quadrature orders. Therefore the memory 

requirement for matrix A alone is 9600
2
 double precision words, or 703 MB. Additional memory 

is necessary for the other variables. However, these are much smaller and add relatively little 

burden to the system compared to A. In the case of SI calculations, memory requirements are of 

the order of the number of spatial cells for cell data such as the material and source maps. SI 

memory is less than 1 MB for the test cases proposed. 

 

 

Table I. Parameters for four test cases 

 

Case σ
t
1 σ

t
2 σ

s
1 σ

s
2 SN 

1 0.75 0.50 0.45 0.30 8 

2 1.00 2.00 0.80 1.50 12 

3 2.00 3.00 1.80 2.00 12 

4 4.00 3.00 4.00 3.00 16 

 

 

The parallel solution results are given as relative speedup SP and efficiency EP using the 

execution times with a single process T1 and with P processes TP. 

 

P
P T

T
S 1  (17) 

 

P
S

E P
P   (18) 

 

Generally, a program must handle two potential bottlenecks while running on a non-dedicated 

system such as LION-XO. First, all users performing parallel calculations compete for time on 

network and through the switches for message communication. During heavy system load, this 

can cause significant variance in execution time of parallel jobs. Second, each program on a node 

contends with others for access to the physical memory space as opposed to virtual memory on 

disk. Moreover, even when our program is occupying both processors on a single node, the 

memory intensive algorithm requires more communication between the cache and memory. On 

LION-XO, an MPI job occupying both processors of a single node is managed with shared 

memory, i.e., the data and instructions share a memory address space, over both sets of the 

physical memory. Combined with the NUMA architecture of AMD Opterons, these two features 

create the potential problem that the two memory controllers of a node must communicate more 

frequently, adversely affecting performance. We have encountered these problems with the new 

algorithm, but serial SI calculations that require much less memory have been relatively immune.  

 

Results of the BJ experiments on the LION-XO system are given in Figs. 2 and 3. The speedup 

and efficiency are based on the P=2 case because the case with a single block is equivalent to 
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direct solution. All four cases show the same trend in efficiency: dropping for small P, increasing 

briefly, then leveling for high P. With large blocks the program must cope with the problems 

described for the message communication and the cache. As more processes are introduced, the 

memory requirement per process drops like 1/P. Furthermore, the reduction in the size of the 

blocks results in fewer operations necessary to invert the diagonal block, asymptotically at a 

cubic rate for increasing number of processes.  
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Figure 2. BJ test cases’ parallel speedup Figure 3. BJ test cases’ parallel efficiency 

 

 

The BJ method is hindered by the increasing number of iterations with increasing number of 

processes shown in Table II. When divided into smaller blocks, the scheme consumes more 

iterations. However, the average time spent per iteration decreases. The competing effects are 

evident in Fig. 3. Cases 1 and 2 both need less than 30 iterations to converge even at P=32, and 

the iteration time has decreased so much that the parallel efficiency is approximately 100%. 

Cases 3 and 4 do not benefit from the same recovery; the growth rate of the number of iterations 

dominates the decreasing iteration time. 

 

 

Table II. Parallel BJ number of iterations 

 

Case 
Number of Processes 

2 4 6 8 10 12 16 20 24 30 32 

1 11 12 13 14 15 16 18 19 20 20 20 

2 15 15 16 17 19 20 24 27 28 29 29 

3 30 33 36 43 52 57 75 90 100 103 105 

4 62 83 111 141 177 199 266 324 367 383 384 

 

 

Parallel CG results on LION-XO are given in Figs. 4 and 5. The results presented are a reduction 

from several repetitive runs for each case and number of processors intended to reduce variance 

in the measured execution time. The data was reduced to what we believe is best representative 

of typical LION-XO performance. In many cases, particularly for a larger number of processes, 
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very little execution time variance was encountered, in contrast to runs with fewer processes. 

One potential explanation for this is the aforementioned cache-memory communication 

bottleneck. Increasing the number of processes reduces the amount of data handled by each 

process. Consequently the cache needs fewer exchanges with memory, which should both 

improve performance and make the execution time more predictable. 

 

 

0

5

10

15

20

25

30

0 4 8 12 16 20 24 28 32 36

R
e

la
ti

ve
 S

p
e

ed
u

p
, S

Number of Processes, P

Case 1 Case 2

Case 3 Case 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 4 8 12 16 20 24 28 32 36

P
ar

al
le

l E
ff

ic
ie

n
cy

, E

Number of Processes, P

Case 1 Case 2

Case 3 Case 4

 
 

Figure 4. CG test cases’ parallel speedup Figure 5. CG test cases’ parallel efficiency 

 

 

The results exhibit the expected general trends—an increase in speedup and decrease in 

efficiency with increasing number of processes. Although these results are relative only to serial 

CG solution, important lessons can be learned. First, because the parallel CG method is 

synchronous, the number of iterations does not increase as it did in the case of BJ. As seen in 

both Figs. 4 and 5, the curves assume an asymptotic trend. The decrease in efficiency is expected 

with parallel grain refinement. However, reaching an asymptotic regime indicates the potential 

for high scalability. Second, from the argument in Sec. 3, we know that CG does not suffer the 

same, or as severe of consequences from varying typical problem parameters including the 

number of discrete ordinates or increasing the scattering ratio. 

 

Our ultimate goal is to improve upon the SI scheme with a novel algorithm for massively parallel 

computing architectures and very large problems in terms of number of cells. Since constructing 

A is computationally very expensive, comparing full execution time between the methods shows 

SI to be the clear victor in most cases. Table III compares execution times between the serial CG 

and SI calculations. The CG solution, for Λ=0, uses fewer iterations and less time per iteration 

than SI in all cases studied. Coupled with the known speedup from Fig. 4, we project that serial 

SI’s advantage diminishes with increasing P. In the case of purely scattering materials, the full 

execution time is already better for the new algorithm. Yet for it to be competitive with SI for all 

situations—and further, to be competitive with parallel SI algorithms such as the wavefront 

approach—two things must happen: 1. Significantly decrease matrix construction time via 

parallel algorithm and 2. Use the advantage the CG method has over the SI scheme, essentially 

replacing the longer grind time with fewer, shorter CG iterations. 
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Table III. Serial SI and CG execution time and number of iterations 

 

Case Source Iterations Solve SI (s) 
Construct 

Matrix (s) 
CG Iterations Solve CG (s) 

1 31 64 1771 14 6 

2 66 288 3521 22 10 

3 493 2115 3416 50 22 

4 2140 16148 5809 83 29 

 

 

6. CONCLUSIONS 

 

All the parallel performance results obtained so far indicate that significant speedup can be 

achieved by the parallel solution of the linear system derived from the iteration Jacobian matrix. 

Two approaches can be applied to solving the system of equations in parallel, BJ and CG. The 

latter is preferred because the number of iterations does not change with increasing number of 

processors, and the time per CG iteration is typically smaller than the time per source iteration.  

 

A massively parallel algorithm for constructing a matrix for the entire domain is still under 

development as we attempt to balance all the operations of a full differentiation sweep equally 

among an increasing number of processes. Angular and spatial domain decompositions should 

work, but will not yield sufficient speedup. A more scalable parallel construction algorithm is 

essential for the approach outlined in Sec. 4.2 to be viable. Matrix construction requires a 

significant amount of execution time as well as memory in serial implementation. The matrices 

for the test problems—which are relatively small compared to typical transport problems—

required thousands of seconds to construct in serial and nearly a gigabyte of memory to store.  

 

We have not presented results on the approach presented in Sec. 4.1 in this paper, but we expect 

to do so in the future; full development of the operators introduced is near completion. Once 

complete, this method must be examined for its spectral properties and its scalability. 
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