
International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009)

Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)

A PARALLEL ALGORITHM FOR SOLVING THE INTEGRAL FORM OF

THE DISCRETE ORDINATES EQUATIONS

R. Joseph Zerr


Department of Mechanical and Nuclear Engineering

The Pennsylvania State University

138 Reber Building, University Park, PA, USA

rjz116@psu.edu

Yousry Y. Azmy

Department of Nuclear Engineering

North Carolina State University

1110 Burlington Laboratories, Raleigh, NC, USA

yyazmy@ncsu.edu

ABSTRACT

The integral form of the discrete ordinates equations involves a system of equations that has a

large, dense coefficient matrix. The serial construction methodology is presented and properties

that affect the execution times to construct and solve the system are evaluated. Two approaches for

massively parallel implementation of the solution algorithm are proposed and the current results of

one of these are presented. The system of equations may be solved using two parallel solvers—

block Jacobi and conjugate gradient. Results indicate that both methods can reduce overall wall-

clock time for execution. The conjugate gradient solver exhibits better performance to compete

with the traditional source iteration technique in terms of execution time and scalability. The

parallel conjugate gradient method is synchronous, hence it does not increase the number of

iterations for convergence compared to serial execution, and the efficiency of the algorithm

demonstrates an apparent asymptotic decline.

Key Words: neutron transport, discrete ordinates, parallel, block Jacobi, conjugate gradient

1. INTRODUCTION

Parallel algorithms for solving the transport equation have been widely discussed and

implemented for approximately 25 years. The discretized transport problem was decomposed in

one or more of the independent phase-space variables, data was distributed among the

participating processors, and the transport equation was solved concurrently. Summarily,

extensive literature is available for energy [1], angular [2], and spatial [3–6] domain

decompositions, and further research demonstrated the utility of a combination of domain

decompositions [7–9].

The value of modern parallel algorithms is typically measured by speedup and scalability [10].

Speedup refers to the ratio of the serial execution time to the parallel execution time on multiple

 Currently located at North Carolina State University, 3105 Burlington Laboratories, Raleigh, NC, USA

R.J. Zerr and Y.Y. Azmy

2009 International Conference on Mathematics, Computational

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

2/15

processing units. Scalability is a measure of how many processing units can be conceivably used

to solve a decomposed problem while maintaining reasonable parallel efficiency. Further,

algorithms exhibiting scalability are desired to do so with a speedup that warrants the additional

costs associated with deploying computing power.

Energy domain decomposition and angular domain decomposition both offer straightforward

means to solve the neutron transport equation in parallel. However, each of these methods is

limited in scalability. Energy domain decomposition is limited to the number of energy groups

and is asynchronous, and angular domain decomposition is limited to the number of ordinates in

the angular quadrature set and is synchronous only in non-curvilinear coordinate systems. [1–2]

Spatial domain decomposition algorithms were sought to achieve greater scalability. Not

surprisingly, the number of cells in a transport problem often significantly exceeds the numbers

of groups or discrete ordinates. Various schemes have been devised to distribute cells of a larger

spatial region across several computing nodes and couple them via interface angular fluxes.

Early schemes divided the region into sub-domains of varying shapes for Cartesian [3] and

cylindrical [7] geometries. The transport equation is solved over all cells in the sub-domains, and

all sub-domains are solved in parallel. The angular fluxes at the sub-domain interfaces are shared

with neighbors to be used as incoming boundary conditions for the next iteration. The process is

repeated until convergence.

In the 1990s, considerable effort was focused on the diagonal plane sweep or wavefront method

[4–6]. Similar to a mesh sweep the outward angular fluxes for the starting cell are passed to the

three adjacent cells in three-dimensional geometry. In the next three cells the cell-centered and

outgoing angular fluxes are computed independently of, and in parallel with each other.

Outgoing angular fluxes are passed to their neighbors. Directions are pipelined for additional

computational efficiency. The wavefront method requires no alteration (except communication)

from a serial mesh sweep, making it an intrinsic domain decomposition [5, 11].

Analysis of this scheme uses a two-dimensional computer cluster topology and has demonstrated

considerable speedup on thousands of processors [4–6] because communication time was a small

fraction of total execution time; the cumulative grind time was the dominant factor in such

calculations. More recently, Humbert [12] applied the wavefront method to a three-dimensional

computer topology. Humbert concluded that very good speedup could be attained for hundreds of

processors. However, the method is not scalable as increasing the number of processors increases

the amount of time spent in communication.

Other notable research involves the use of Krylov subspace methods, namely the conjugate

gradient (CG) method, to replace iterative procedures of neutronics equations. Böhm, Brehm,

and Finnemann [13] used a parallel CG solver for diffusion equations. Gupta and Modak [14]

demonstrated how a discrete ordinates problem with the diamond difference scheme could be

posed as a CG problem, replacing the source iteration (SI) scheme. Chen and Sheu [15]

investigated the use of preconditioners with the CG method for neutron transport problems.

Parallel Integral Discrete Ordinates Solution

2009 International Conference on Mathematics, Computational

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

3/15

The motivation for this work is to develop a new algorithm that solves the transport equation in a

massively parallel environment. Since grind time is still the dominant component of transport

solvers [16], this work proposes an alternate methodology that abandons the mesh sweep and SI

schemes. We discuss new strategies for the construction of the discrete form of the transport

problem and the determination of the scalar flux solution from the resulting system of linear

equations via parallel algorithms. We believe our algorithms, by eliminating the costs of highly

repetitive mesh sweeps, can reduce overall execution time for very large problem sizes in

massively parallel computing environments.

This paper is divided into the following sections. Section 2 briefly introduces the discretized

transport equations used in our analysis. Section 3 describes some of the properties of our system

of equations and how varying parameters affect problem size. Section 4 discusses two distinct

paths that one can take to solve for the scalar flux distribution in parallel. Section 5 presents the

results attained thus far for composing and solving the system of equations in parallel. Section 6

discusses the conclusions drawn from our work and outlines the future work to be performed.

2. THE AHOT-N METHODOLOGY

For this study we adopt the arbitrarily high order transport nodal (AHOT-N) equations [17, 18]

as the starting point for our new algorithm. These equations can be easily implemented in a mesh

sweep of an SI scheme using a weighted diamond difference (WDD) structure. Presented here

are key equations for three-dimensional geometry as an introduction to the methodology and to

introduce the notation. Readers are directed to the references for more detailed derivations.

2.1. The AHOT-N Equations

In AHOT-N the spatial distribution of the flux over a computational cell is computed as a

truncated series of normalized Legendre polynomials. The energy group index has been

suppressed.

       













k

k

j

j

i

i

c

c

nv

k

b

b

u

j

a

a

t

i

vutkjin zyxzP
c

dz
yP

b

dy
xP

a

dx
,,

222
,,,,,,  (1)

       









k

k

j

j

c

c

inv

k

b

b

u

j

ivuxkjin zyazP
c

dz
yP

b

dy
a ,,

22
,,,,,,  (2)

The moments for the y- and z-directional edges, ψn,i,j,k,t,y,v(±bj) and ψn,i,j,k,t,u,z(±ck), respectively,

can be defined analogously to Eq. (2). The discrete ordinate, x-, y-, and z-dimension indices are

denoted with n, i, j, and k, respectively. 2ai, 2bj, and 2ck are the x-, y-, and z-dimensions of the

cell, respectively. The continuous angular flux distribution in the direction of n is ψn(x,y,z). The

functions Pt(x), Pu(y), Pv(z) are the t
th

, u
th

, and v
th

 orders, respectively, of the Legendre

polynomial, normalized over the range of the corresponding independent variables.

R.J. Zerr and Y.Y. Azmy

2009 International Conference on Mathematics, Computational

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

4/15

In AHOT-N the spatial expansion order of all fluxes in all dimensions ranges from 0 to Λ. Four

sets of equations are needed to describe the flux for the increasing spatial order. The first set of

(Λ+1)
3
 equations expresses the conservation of angular flux spatial moments over the cell.

         

        
 

   
 

   
 

vutkjivutkji

s

kjivutkjin

t

kji

v

vol

lutkjin

z

knn

u

uol

vltkjin

y

jnn

t

tol

vulkjin

x

inn

i

zutkjin

vo

zutkjin

z

kn

v

n

i

vytkjin

uo

vytkjin

y

jn

u

n

i

vuxkjin

to

vuxkjin

x

in

t

n

S

lsglsg

lsgsg

sgsg

,,,,,,,,,,,,,,,,,,,,

1

,,,,,,

*

,

1

,,,,,,

*

,

1

,,,,,,

*

,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,

122122

1221

11

































 (3)

sg is the signum function and acts on the x-, y-, and z-components of the angular direction

cosines. The i and o superscripts refer to the incoming and outgoing angular flux edge moments,

respectively. All the summations have an increment of two, denoted as Σ
*
. The summations’

starting indices are defined with o(u)=[(u+1)mod(2)] (analogously for other directions). The

macroscopic cross sections are denoted by σ
t
i,j,k for total and as σ

s
i,j,k for isotropic scattering. The

scalar flux and fixed source are i,j,k,t,u,v and Si,j,k,t,u,v, respectively. The epsilon terms are defined

analogously, and for the x-direction specifically, it is

i

nx

in a2,


  . (4)

The next three sets, each comprising (Λ+1)
2
 equations, are weighted difference formulas to relate

angular flux spatial moments within the cell to the transverse-moments of the angular flux on

cell x-, y-, and z-faces. The x-face equation is

  




















 








 

oddl

vulkjinkjinn

evenl

vulkjin

i

vuxkjin

kjino

vuxkjin

kjin

lsg

l

,1

,,,,,,

*

,,,

,0

,,,,,,

*

,,,,,,

,,,

,,,,,,

,,,

)12(

)12(
2

1

2

1









. (5)

The spatial weights, e.g. αn,i,j,k in Eq. (5), have been defined by Azmy [17] as a series of terms,

depending on the spatial order, of the ratio between εn from Eq. (4) and σ
t
.

The calculation for each computational cell can be composed of a system of equations from Eqs.

(3) and (5). One coefficient matrix operates on a vector for the angular flux moments within the

cell and outgoing at the faces: the unknown quantities. Another coefficient matrix operates on the

known neutron sources—scattering and distributed—and the incoming angular flux cell-face

moments. A new matrix Γ is formed by inverting the unknown vector’s matrix and multiplying it

with the known vector’s matrix. Then the problem for each cell is simplified to the form x=Γb.

This system has (Λ+1)
3
+3(Λ+1)

2
 equations.

Parallel Integral Discrete Ordinates Solution

2009 International Conference on Mathematics, Computational

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

5/15

   T kjin

xiyizips

kjin

T

kjin

xoyozo S ,,,

,,,

,,,,,,

,,, ,,,,,,   ,

kjin

yzyzyzxzyzxyyza

xzyzxzxzxzxyxza

xyyzxyxzxyxyxya

ayzaxzaxyaa

kjin

,,,

,,,































(6)

The moment indices are not necessary for the sub-vectors which are composed of all moments.

The x, y, and z superscripts in the equation indicate the dimension of interest in the equation; x, y,

and z superscripts in the sub-matrices of Γ refer to the plane of integration from Eq. (2). The

scalar flux is given the superscript p to denote it as an iterate in the SI scheme to determine a new

scalar flux solution from its previous value.

2.2. Using the Iteration Jacobian Matrix to Solve for the Scalar Flux

In the SI scheme one solves for the left hand side (LHS) angular flux moments of Eq. (6) for all

angles and uses the angular quadrature to determine a new scalar flux.

 SA psv   (7)

v
 is the new scalar flux iterate and S is the source, both vectors. σ

s
 is the self-scattering cross

section matrix, and A is a coefficient matrix whose elements are constructed from the sub-

matrices of the Γ-matrix in the discretized transport equation, Eq. (6). By assuming vacuum

boundary conditions for the domain, anisotropic sources that would otherwise appear on the RHS

are neglected. Upon iterative convergence of Eq. (7), successive iterates of the scalar flux are

equal in the iterative limit, i.e. the solution ∞
 satisfies the following relation [10],

  ASAI s 1   (8)

where I is the identity matrix. In the SI scheme A is never constructed, and the solution is

computed from successive mesh sweeps instead of solving the system of equations in (8).

The impetus to our new approach begins with construction of A, followed by explicitly solving

the system in Eq. (8). First it is recognized that this matrix is the iteration Jacobian of Eq. (7).

   p

vutkji

v

vutkji

s

kji

vutkjivutkjiA
',',',',','

,,,,,

',','

',',',',',',,,,,

1





 


 (9)

One must perform a single mesh sweep along all discrete ordinates in the angular quadrature to

construct A. Instead of computing the cell-centered and outward angular flux moments given the

incoming fluxes, the cell-moments of the angular flux of one node are coupled to the cell-

moments of the scalar flux in all upstream cells for a specific discrete ordinate. Ultimately the

R.J. Zerr and Y.Y. Azmy

2009 International Conference on Mathematics, Computational

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

6/15

scalar flux spatial moments in any given cell will be related to the scalar flux spatial moments in

all other cells. By differentiating the AHOT-N/WDD system of equations (6) with respect to p
,

one can demonstrate the aforementioned coupling. The flux moment indices are suppressed and

each equation represents the full range of flux spatial moments.

p

kji

xi

kjinxyyz

kjinp

kji

yi

kjinxyxz

kjinp

kji

zi

kjinxyxy

kjinp

kji

p

kjis

kji

xya

kjinp

kji

zo

kjin

p

kji

xi

kjinayz

kjinp

kji

yi

kjinaxz

kjinp

kji

zi

kjinaxy

kjinp

kji

p

kjis

kji

aa

kjinp

kji

kjin

',','

,

,,,

,,,

',','

,

,,,

,,,

',','

,

,,,

,,,

',','

,,

,,,,,

',','

,

,,,

',','

,

,,,

,,,

',','

,

,,,

,,,

',','

,

,,,

,,,

',','

,,

,,,,,

',','

,,,

































































































(10a)

(10b)

The y- and x-direction equations are written analogously to Eq. (10b). The first term in each

expression equals zero unless i, j, k = i’, j’, k’ because no formulaic relation exists among the

previous iterate of scalar flux moments of all the cells. On the other hand, the incoming angular

flux moments at the faces of a given cell are equal to the outgoing angular flux moments from

the three adjacent upstream cells. Thus the three incoming angular flux moment terms in each

equation must be evaluated for the cell’s upstream neighbors.

We define the final three equations as matrices whose elements are accumulated during the mesh

sweep. At each cell in the sweep, we compute the coupling for the three adjacent downstream

cells to all the cells currently considered in the sweep.

         p

kji

xo

kji

kjikjip

kji

yo

kji

kjikjip

kji

zo

kji

kjikji XYZ
',','

,

,,

',',',,1

',','

,

,,

',',',1,

',','

,

,,

',','1,, ,,

























  (11)

These matrices are composed of blocks at each upstream cell i’, j’, k’; each block’s dimensions

are (Λ+1)
2
×(Λ+1)

3
. The angle index is suppressed because the mesh sweep in one angle is

independent from all others. However, the angle manifests itself in direction cosines used to

compute the γ sub-matrices as well as the progression order in the sweep.

From Eqs. (10) and (11) one can observe the relation between adjacent cells.

        
yza

kji

s

kjikjikji

xza

kji

s

kjikjikji

xya

kji

s

kjikjikji XYZ ,,,,,,,,1,,,,,,,1,,,,,,,1,, ,,    (12)

The derivatives involving the incoming angular flux moments in Eq. (10) may be substituted

with the adjacent cells’ outgoing expressions as in Eq. (11). Repeating this for all upstream cells

ultimately yields the following formulae to recursively update the X, Y, and Z matrices from all

the non-adjacent upstream cells.

           

           

           ',',',,,,',',',,,,',',',,,,',',',,1

',',',,,,',',',,,,',',',,,,',',',1,

',',',,,,',',',,,,',',',,,,',','1,,

kjikji

yzyz

kjikjikji

yzxz

kjikjikji

yzxy

kjikjikji

kjikji

xzyz

kjikjikji

xzxz

kjikjikji

xzxy

kjikjikji

kjikji

xyyz

kjikjikji

xyxz

kjikjikji

xyxy

kjikjikji

XYZX

XYZY

XYZZ



















(13a)

(13b)

(13c)

Parallel Integral Discrete Ordinates Solution

2009 International Conference on Mathematics, Computational

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

7/15

At each cell the values for X, Y, and Z from all upstream cells have been computed for that cell.

The A matrix is updated using these values. The final three terms in Eq. (10a) are computed.

        ',',',,,,',',',,,,',',',,,,

',','

,,

kjikji

ayz

kjikjikji

axz

kjikjikji

axy

kjip

kji

kji
XYZ 









 (14)

Further, one computes the first term in Eq. (10a).

s

kji

aa

kjip

kji

kji

,,,,

,,

,,










 (15)

The A matrix is updated with Eqs. (14) and (15) lastly by summing the contributions from all

N(N+2) angles in the quadrature set.

   


 




)2(

1 ',','

,,,

',','

',',',,

1 NN

n
p

kji

kjin

ns

kji

kjikjiA






 (16)

The A blocks updated with Eq. (16) have dimensions (Λ+1)
3
×(Λ+1)

3
. The locations of the blocks

are determined by the indices on A. Diagonal blocks of A result from the expression given by Eq.

(15), whereas the off-diagonal blocks result from expression given by Eq. (14); for downstream

cells the LHS equals zero in Eq. (14) and thus has no effect in Eq. (16).

The A matrix is made symmetric easily. Each block of A described by Eq. (16) relates the flux in

one cell caused by the flux in another. Because we assume the scattering and fixed sources are

isotropic, the reciprocity relation holds: the flux at some point r1 caused by an isotropic source at

point r2 is equal to the flux at r2 caused by the isotropic source at r1. To make A symmetric all

elements in the set of (Λ+1)
3
 equations of each spatial cell are multiplied by three factors for

reciprocity: scattering cross section, cell volume, and a flux moment factor.

Symmetric matrices have advantages over their non-symmetric counterparts. If solving the

system in Eq. (8) directly, Cholesky factorization may be applied, improving performance.

Furthermore, when symmetric systems are also positive definite, the conjugate gradient (CG)

method may be employed. Other Krylov subspace methods apply for coefficient matrices that are

not symmetric positive definite (SPD). However, CG is the best choice when the system is SPD.

No analytic method has been determined yet to prove the positive definiteness for a general case

of any problem size and material properties. However, experience for many test cases and a

range of parameters has shown no convergence difficulties, and the computed solution has

consistently agreed within the convergence criterion with the solution determined directly with

Gaussian elimination.

R.J. Zerr and Y.Y. Azmy

2009 International Conference on Mathematics, Computational

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

8/15

3. PROPERTIES AFFECTING PROBLEM SIZE AND SOLUTION

We have implemented the three-dimensional AHOT-N/WDD solution methodology in a serial

computer code to test accuracy and gather information about how the methodology is affected by

various problem parameters. The AHOT-N/WDD equations may be solved using the SI

approach or using the A iteration Jacobian matrix and Eq. (8). In the latter case, once the matrix

is constructed and made symmetric it can be solved directly with the LAPACK subroutine

DPOSV [19] or with CG iterations. Several expected relations between serial execution time and

variable problem parameters have been confirmed by our research and are briefly highlighted

here.

For brevity we define the number of cells as M. Refining the spatial mesh for a sample problem

increases M while keeping fixed the overall physical dimensions of the problem. The number of

SI and CG iterations is insensitive to M. SI execution times grow linearly with M, but CG time

per iteration grows like M
2
 because of the larger matrix and inner products. Additional cells

require an additional row and column in A, and matrix construction and direct solution times thus

grow like M
2
 and M

3
, respectively.

Raising the angular quadrature order for the problem also has straightforward consequences. The

number of source iterations is insensitive to increasing the total number of discrete ordinates (N

for brevity), but the SI execution time per iteration grows linearly with N. Constructing A also

grows linearly with N. However, CG iteration time and direct solution time are unaffected since

the matrix size does not change.

The scattering ratio of a material is adjusted by changing the scattering cross section while

keeping the total cross section fixed. This will not affect the size of A, the direct solution time, SI

time, or CG iteration time. The SI scheme displays a markedly slow convergence rate in highly

scattering media. The CG method also requires a greater number of iterations when the scattering

ratio of the materials increases and approaches unity, but the effect is considerably smaller.

4. COMPOSING AND SOLVING THE SYSTEM OF EQUATIONS IN PARALLEL

A is large and dense; it is a square matrix with dimension M×(Λ+1)
3
. Both storing a large matrix

and solving its system serially are computationally prohibitive in large applications.

Consequently, this technique generally is not competitive for serial implementation. However,

we propose that the solution of the scalar flux moments can be solved on a parallel system with

two different approaches designed to reduce per processor memory requirement and execution

time.

Ultimately, our new approaches seek to be competitive with SI by avoiding the repetitive mesh

sweeps and the costly grind time associated with them. The A matrix described in Sec. 2 is

independent of the scattering source. Neglecting any change in cross sections that would

accompany decay chain calculations, A needs to be constructed only once at the beginning of a

calculation and multiplied with the in-group source. The scalar flux moments are then computed

Parallel Integral Discrete Ordinates Solution

2009 International Conference on Mathematics, Computational

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

9/15

by solving the algebraic system comprising Eq. (8). Two approaches to parallelizing this general

methodology emerge.

4.1. Spatially Decomposing the Full Problem into Sub-Domains

In the first approach the overall region is divided into several sub-domains. This method is

similar to early spatial domain decompositions described in Sec. 1. Each sub-domain is treated as

an independent problem. We compute the scalar flux moments for all cells in the sub-domain.

Using this information, we then compute all the outgoing angular flux moments at the

boundaries of the sub-domain. The outgoing angular flux moments are passed between adjacent

sub-domains in an iterative fashion. The exchanged data package is a set of boundary conditions

for a new calculation to compute the updated scalar flux distribution within the sub-domain. An

iterative process takes place until convergence of the cell-average, i.e. zeroth moment, of the

scalar flux is achieved. Spectral properties of the iterative process have yet to be investigated for

this scheme.

Two operators are necessary for this approach. They can be pre-computed only once and

concurrently among all processes. To compute the scalar flux distribution for the sub-domain, we

must account for the dependence of the fixed (isotropic) source and the anisotropic boundary

conditions: ϕ = Φ(S,ψin) = Φ1S+ Φ2ψin. In the case of vacuum boundary conditions, the second

term is dropped and the first term is equivalent to the RHS of Eq. (8). The second operator

computes the outgoing angular flux moments at the edges of the boundary cells from the

computed scalar flux spatial moments, source, and boundary conditions: ψout = Ψ(ϕ,S,ψin).

These operators still involve large matrices whose order grows quickly with the number of

spatial cells, O(M
2
), but partitioning the full region into sub-domains allows one to greatly

reduce per processor memory and/or allows for a much larger problem size.

4.2. Parallel Construction and Storage of A with Parallel Solvers

In the second approach, the A matrix is composed and solved in parallel directly. Angular and

spatial domain decompositions already demonstrate techniques capable of parallelizing the mesh

sweep. Angular decomposition can only scale to hundreds of processors for most realistic

applications. Spatial decomposition scales higher, but it does so at the cost of increased

communication and processor idleness that could inhibit the parallel efficiency when applied to

only a single sweep over all angles. Moreover, the unique coupling structure of the matrix may

lend itself to a more suitable, massively parallel algorithm to construct A. Solving the system of

equations in parallel can be accomplished in several ways, including the Block Jacobi (BJ) and

parallel CG [13, 20] methods. Research is still ongoing to develop a massively parallel algorithm

for the construction of A.

4.2.1. The parallel Block Jacobi method

In BJ each process is assigned a block of the matrix whose order is determined by the total

number of equations divided by the selected number of blocks, assuming the quotient is an

integer value. Moreover, the processes are assigned the corresponding block-size portions of the

solution and right hand side (RHS) vectors. Each process inverts its owned diagonal block and

R.J. Zerr and Y.Y. Azmy

2009 International Conference on Mathematics, Computational

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

10/15

stores the result. In parallel each process multiplies an off-diagonal block by its owned solution

sub-vector and passes it to the next process. Repeating this step and combining the sub-vectors

P−1 times, where P is the number of processes, leaves each process with the sub-vector needed

to complete its own RHS update. Once the RHS sub-vector is multiplied by the saved inverted

diagonal block, each process will have computed its portion of the new scalar flux iterate.

Clearly BJ is an asynchronous decomposition.

4.2.2. The parallel conjugate gradient method

The parallel CG solution follows the same sequence of steps as a serial CG solution, except

matrix-vector multiplications and inner products are performed concurrently to reduce execution

time. To compute the scaling factors for the search direction and solution vectors, the inner

product of the residual with itself is performed in parallel and the results are reduced, summed,

and broadcast to all participating processes. At the end of a given iteration, the search direction

sub-vectors owned by individual processes are broadcast to the set of participating processors in

a ring topology so that each process has the full search direction for the next iteration. CG

parallelization is synchronous; hence it has the benefit of not degrading the iterative convergence

rate of serial calculations. The parallelization penalty comprises communication of the residuals’

inner products and the search direction sub-vectors to other processes, but this is balanced with

the benefits from reduced execution time due to concurrency.

5. COMPUTATIONAL RESULTS

Thus far our research has focused on the approach outlined in Sec. 4.2. In this section, measured

performance via numerical experiments is presented, related to solving the system of equations

with the BJ and CG schemes. The goals of these experiments are to verify the parallel algorithms

and to identify challenges to achieving good parallel performance. The message passing interface

(MPI) is used to implement all parallel instructions.

Test runs were performed on the LION-XO distributed memory cluster at Penn State University

[21]. LION-XO does not run in dedicated mode, and resource contention has been observed to

have serious impacts. Users running parallel jobs compete for bandwidth over the network and

through the switches and for memory and access to the memory. LION-XO is comprised of 132

computing nodes. 40 compute nodes are dual AMD Opteron processors rated at 2.4 GHz. The

other 92 nodes are quad AMD processors rated at 2.6 GHz. All nodes are connected by a gigabit

Ethernet switch and an Infiniband network. MPI jobs on LION-XO are limited to 16 nodes and 2

processors per node. We used only the dual processor machines to reduce the number of network

communications and thereby the total communication time. These nodes have 8 GB of memory.

AMD Opteron machines have non-uniform memory access (NUMA) designs. For nodes with

two processors, each processor has its own memory controller and a directly connected physical

memory set. Communication with other memory sets is performed over a HyperTransport link.

There is no policy on LION-XO for how the memory of a particular job is allocated to the

physical memory space.

Parallel Integral Discrete Ordinates Solution

2009 International Conference on Mathematics, Computational

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

11/15

Numerical experiments’ results are provided for four one-group test cases of AHOT-N order

zero, Λ=0, employing the parallel BJ and CG methods. All problems use a 20×20×24 Cartesian

mesh, two materials, and a fixed source distribution. Table I provides further information about

the cross section data and the fully symmetric angular quadrature orders. Therefore the memory

requirement for matrix A alone is 9600
2
 double precision words, or 703 MB. Additional memory

is necessary for the other variables. However, these are much smaller and add relatively little

burden to the system compared to A. In the case of SI calculations, memory requirements are of

the order of the number of spatial cells for cell data such as the material and source maps. SI

memory is less than 1 MB for the test cases proposed.

Table I. Parameters for four test cases

Case σ
t
1 σ

t
2 σ

s
1 σ

s
2 SN

1 0.75 0.50 0.45 0.30 8

2 1.00 2.00 0.80 1.50 12

3 2.00 3.00 1.80 2.00 12

4 4.00 3.00 4.00 3.00 16

The parallel solution results are given as relative speedup SP and efficiency EP using the

execution times with a single process T1 and with P processes TP.

P
P T

T
S 1 (17)

P
S

E P
P  (18)

Generally, a program must handle two potential bottlenecks while running on a non-dedicated

system such as LION-XO. First, all users performing parallel calculations compete for time on

network and through the switches for message communication. During heavy system load, this

can cause significant variance in execution time of parallel jobs. Second, each program on a node

contends with others for access to the physical memory space as opposed to virtual memory on

disk. Moreover, even when our program is occupying both processors on a single node, the

memory intensive algorithm requires more communication between the cache and memory. On

LION-XO, an MPI job occupying both processors of a single node is managed with shared

memory, i.e., the data and instructions share a memory address space, over both sets of the

physical memory. Combined with the NUMA architecture of AMD Opterons, these two features

create the potential problem that the two memory controllers of a node must communicate more

frequently, adversely affecting performance. We have encountered these problems with the new

algorithm, but serial SI calculations that require much less memory have been relatively immune.

Results of the BJ experiments on the LION-XO system are given in Figs. 2 and 3. The speedup

and efficiency are based on the P=2 case because the case with a single block is equivalent to

R.J. Zerr and Y.Y. Azmy

2009 International Conference on Mathematics, Computational

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

12/15

direct solution. All four cases show the same trend in efficiency: dropping for small P, increasing

briefly, then leveling for high P. With large blocks the program must cope with the problems

described for the message communication and the cache. As more processes are introduced, the

memory requirement per process drops like 1/P. Furthermore, the reduction in the size of the

blocks results in fewer operations necessary to invert the diagonal block, asymptotically at a

cubic rate for increasing number of processes.

0

5

10

15

20

25

30

35

0 4 8 12 16 20 24 28 32 36

R
e

la
ti

ve
 S

p
e

ed
u

p
, S

Number of Processes, P

Case 1 Case 2

Case 3 Case 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 4 8 12 16 20 24 28 32 36
P

ar
al

le
l E

ff
ic

ie
n

cy
, E

Number of Processes, P

Case 1 Case 2 Case 3 Case 4

Figure 2. BJ test cases’ parallel speedup Figure 3. BJ test cases’ parallel efficiency

The BJ method is hindered by the increasing number of iterations with increasing number of

processes shown in Table II. When divided into smaller blocks, the scheme consumes more

iterations. However, the average time spent per iteration decreases. The competing effects are

evident in Fig. 3. Cases 1 and 2 both need less than 30 iterations to converge even at P=32, and

the iteration time has decreased so much that the parallel efficiency is approximately 100%.

Cases 3 and 4 do not benefit from the same recovery; the growth rate of the number of iterations

dominates the decreasing iteration time.

Table II. Parallel BJ number of iterations

Case
Number of Processes

2 4 6 8 10 12 16 20 24 30 32

1 11 12 13 14 15 16 18 19 20 20 20

2 15 15 16 17 19 20 24 27 28 29 29

3 30 33 36 43 52 57 75 90 100 103 105

4 62 83 111 141 177 199 266 324 367 383 384

Parallel CG results on LION-XO are given in Figs. 4 and 5. The results presented are a reduction

from several repetitive runs for each case and number of processors intended to reduce variance

in the measured execution time. The data was reduced to what we believe is best representative

of typical LION-XO performance. In many cases, particularly for a larger number of processes,

Parallel Integral Discrete Ordinates Solution

2009 International Conference on Mathematics, Computational

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

13/15

very little execution time variance was encountered, in contrast to runs with fewer processes.

One potential explanation for this is the aforementioned cache-memory communication

bottleneck. Increasing the number of processes reduces the amount of data handled by each

process. Consequently the cache needs fewer exchanges with memory, which should both

improve performance and make the execution time more predictable.

0

5

10

15

20

25

30

0 4 8 12 16 20 24 28 32 36

R
e

la
ti

ve
 S

p
e

ed
u

p
, S

Number of Processes, P

Case 1 Case 2

Case 3 Case 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 4 8 12 16 20 24 28 32 36

P
ar

al
le

l E
ff

ic
ie

n
cy

, E

Number of Processes, P

Case 1 Case 2

Case 3 Case 4

Figure 4. CG test cases’ parallel speedup Figure 5. CG test cases’ parallel efficiency

The results exhibit the expected general trends—an increase in speedup and decrease in

efficiency with increasing number of processes. Although these results are relative only to serial

CG solution, important lessons can be learned. First, because the parallel CG method is

synchronous, the number of iterations does not increase as it did in the case of BJ. As seen in

both Figs. 4 and 5, the curves assume an asymptotic trend. The decrease in efficiency is expected

with parallel grain refinement. However, reaching an asymptotic regime indicates the potential

for high scalability. Second, from the argument in Sec. 3, we know that CG does not suffer the

same, or as severe of consequences from varying typical problem parameters including the

number of discrete ordinates or increasing the scattering ratio.

Our ultimate goal is to improve upon the SI scheme with a novel algorithm for massively parallel

computing architectures and very large problems in terms of number of cells. Since constructing

A is computationally very expensive, comparing full execution time between the methods shows

SI to be the clear victor in most cases. Table III compares execution times between the serial CG

and SI calculations. The CG solution, for Λ=0, uses fewer iterations and less time per iteration

than SI in all cases studied. Coupled with the known speedup from Fig. 4, we project that serial

SI’s advantage diminishes with increasing P. In the case of purely scattering materials, the full

execution time is already better for the new algorithm. Yet for it to be competitive with SI for all

situations—and further, to be competitive with parallel SI algorithms such as the wavefront

approach—two things must happen: 1. Significantly decrease matrix construction time via

parallel algorithm and 2. Use the advantage the CG method has over the SI scheme, essentially

replacing the longer grind time with fewer, shorter CG iterations.

R.J. Zerr and Y.Y. Azmy

2009 International Conference on Mathematics, Computational

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

14/15

Table III. Serial SI and CG execution time and number of iterations

Case Source Iterations Solve SI (s)
Construct

Matrix (s)
CG Iterations Solve CG (s)

1 31 64 1771 14 6

2 66 288 3521 22 10

3 493 2115 3416 50 22

4 2140 16148 5809 83 29

6. CONCLUSIONS

All the parallel performance results obtained so far indicate that significant speedup can be

achieved by the parallel solution of the linear system derived from the iteration Jacobian matrix.

Two approaches can be applied to solving the system of equations in parallel, BJ and CG. The

latter is preferred because the number of iterations does not change with increasing number of

processors, and the time per CG iteration is typically smaller than the time per source iteration.

A massively parallel algorithm for constructing a matrix for the entire domain is still under

development as we attempt to balance all the operations of a full differentiation sweep equally

among an increasing number of processes. Angular and spatial domain decompositions should

work, but will not yield sufficient speedup. A more scalable parallel construction algorithm is

essential for the approach outlined in Sec. 4.2 to be viable. Matrix construction requires a

significant amount of execution time as well as memory in serial implementation. The matrices

for the test problems—which are relatively small compared to typical transport problems—

required thousands of seconds to construct in serial and nearly a gigabyte of memory to store.

We have not presented results on the approach presented in Sec. 4.1 in this paper, but we expect

to do so in the future; full development of the operators introduced is near completion. Once

complete, this method must be examined for its spectral properties and its scalability.

ACKNOWLEDGMENTS

The funding for this work has been provided by Los Alamos National Laboratory.

REFERENCES

1. B. R. Wienke and R. E. Hiromoto, ―Parallel SN Iteration Schemes,‖ Nuclear Sciences and

Engineering, 90, pp.116–123 (1985).

2. Y. Y. Azmy, ―On the Adequacy of Message-Passing Parallel Supercomputers for Solving

Neutron Transport Problems,‖ Proceedings of Supercomputing ’90, IEEE Computer Society

Press, pp.693–699 (1990).

3. M. Yavuz and E.W. Larsen, ―Iterative Methods for Solving x-y Geometry and SN Problems on

Parallel Architecture Computers,‖ Nuclear Science and Engineering, 112, pp.32–42 (1992).

4. R. S. Baker and R. E. Alcouffe, ―Parallel 3-D SN Performance for DANTSYS/MPI on the

Cray T3D,‖ Proceedings of the Joint International Conference on Mathematical Methods

Parallel Integral Discrete Ordinates Solution

2009 International Conference on Mathematics, Computational

Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

15/15

and Supercomputing for Nuclear Applications, Saratoga Springs, NY, USA, October 5–9, 1,

pp.377–393 (1997).

5. R. S. Baker and K. R. Koch, ―An SN Algorithm for the Massively Parallel CM-200

Computer,‖ Nuclear Science and Engineering, 128, pp.312–30 (1998).

6. A. Hoisie, O. Lubeck, and H. Wasserman, ―Performance and Scalability Analysis of

Teraflop-Scale Parallel Architectures Using Multidimensional Wavefront Applications,‖

International Journal of High Performance Computing Applications, 14, pp.330–346 (2000).

7. R. Mattis and A. Haghighat, ―Domain Decomposition of a Two-Dimensional SN Method,‖

Nuclear Science and Engineering, 111, pp.180–196 (1992).

8. G. E. Sjoden and A. Haghighat, ―PENTRAN – A 3-D Cartesian Parallel SN Code with

Angular, Energy, and Spatial Decomposition,‖ Proceedings of the Joint International

Conference on Mathematical Methods and Supercomputing for Nuclear Applications,

Saratoga Springs, NY, USA, October 5–9, 1, pp.553–562 (1997).

9. M. R. Dorr and C. H. Still, ―Concurrent Source Iteration in the Solution of Three-

Dimensional, Multigroup Discrete Ordinates Neutron Transport Equations,‖ Nuclear Science

and Engineering, 122, pp.287–308 (1996).

10. H. F. Jordan and G. Alaghband, Fundamentals of Parallel Processing, Prentice Hall, Pearson

Education, Inc., Upper Saddle River, NJ, USA (2003).

11. Y. Y. Azmy, ―Multiprocessing for Neutron Diffusion and Deterministic Transport Methods,‖

Progress in Nuclear Energy, 31, No. 3, pp.317–368 (1997).

12. P. Humbert, ―Parallelization of PANDA Discrete Ordinates Code Using Spatial

Decomposition,‖ Proceedings of PHYSOR-2006, ANS Topical Meeting on Reactor Physics

[on CD-ROM], Vancouver, BC, Canada, September 10–14 (2006).

13. A. Böhm, J. Brehm, and H. Finnemann, ―Parallel Conjugate Gradient Algorithm for Solving

the Neutron Diffusion Equation on SUPRENUM,‖ Proceedings of the 5
th

 International

Conference of Supercomputing, Cologne, West Germany, pp. 163–171 (1991).

14. A. Gupta and R. S. Modak, ―On the Use of the Conjugate Gradient Method for the Solution

of the Neutron Transport Equation,‖ Annals of Nuclear Energy, 29, pp.1933–1951 (2002).

15. G. S. Chen and R. D. Sheu, ―Application of Two Preconditioned Generalized Conjugate

Gradient Methods to Three-Dimensional Neutron and Photon Transport Equations,‖ Progress

in Nuclear Energy, 45, No. 1, pp.11–23 (2004).

16. J. A. Fischer, ―Comparison of Spatial and Angular Domain Decomposition Algorithms for

Discrete Ordinates Transport Methods Using Parallel Performance Models,‖ Progress in

Nuclear Energy, M.S. Thesis, The Pennsylvania State University (2003).

17. Y. Y. Azmy, ―The Weighted Diamond-Difference Form of Nodal Transport Methods,‖

Nuclear Science and Engineering, 198, pp.29–40 (1996).

18. Y. Y. Azmy, ―A New Algorithm for Generating Highly Accurate Benchmark Solutions to

Transport Test Problems,‖ Proceedings of the XI ENFIR/IV ENAN Joint Nuclear

Conferences, Pocos de Caldas Springs, MG, Brazil, August 18–22 (1997).

19. E. Anderson, et al., LAPACK User’s Guide, 3
rd

 Ed., made available online

http://www.netlib.org/lapack/lug/index.html, Last Accessed February 24, 2009 (1999).

20. Y. Saad, Iterative Methods for Sparse Linear Systems, 1
st
 Ed., made available online

http://www-users.cs.umn.edu/~saad/books.html, Last Accessed February 21, 2009 (1996).

21. ―LION-XO PC Cluster‖, http://gears.aset.psu.edu/hpc/systems/lionxo/, Last Accessed

February 24, 2009 (2009).

http://www.netlib.org/lapack/lug/index.html
http://www-users.cs.umn.edu/~saad/books.html
http://gears.aset.psu.edu/hpc/systems/lionxo/

