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ABSTRACT 
 

An algorithm has been developed for accurately determining scattering angles of neutrons emerging from ine-
lastic collisions of fast neutrons when a multi-group energy transfer matrix method is used.  This new algorithm is 
designed to replace existing algorithm in the RCP01 Monte Carlo neutron transport code that uses an approximation 
for the direction of the exiting neutron.  RCP01 solves neutron and photon transport problems in three dimensional 
geometry with the energy treated as a continuous variable.  The new algorithm is based on a classical treatment of 
two-body collision kinematics with a stationary target nucleus and has no approximations, where the scattering an-
gle in the laboratory coordinate system (LAB) is defined in terms of the center-of-mass coordinate system (CM) 
scattering angle and the LAB exit energy.  
 

While multi-group methods for inelastic scattering are less exact than the discrete excitation energy level 
method used in other Monte Carlo codes, such as MCNP, they have computational advantages and are sufficiently 
accurate for a wide variety of fast and thermal reactor applications as shown by experience.  In the  multi-group 
method, an energy-group matrix is randomly sampled to determine the exit energy group, where each matrix ele-
ment corresponds to the mean number of neutrons appearing in an exit energy group per inelastic scattering event in 
an incident energy group.  The scattering angle from an anisotropic inelastic scattering event can be determined by 
using angular distribution functions specified either in the LAB or in the CM system.  
 

Current ENDF inelastic scattering energy transfer functions for most nuclides are specified in terms of LAB 
energies, and only a few light nuclides are specified in terms of CM energies.  Therefore, the multi-group matrices 
for fast inelastic scattering are usually defined in terms of LAB energies.  However, the calculation of accurate LAB 
scattering angles requires corresponding CM exit energies.  When the CM exit energy is unavailable, it may be ap-
proximated by using the LAB exit energy, as in RCP01.  This approximation is accurate for heavy nuclides or for 
light nuclides in a confined realm of CM scattering angles.  The approximation, however, is less accurate for other 
conditions.  For example, when the CM scattering cosine is ±0.6 for graphite, the error in the LAB scattering angle 
could exceed 10%.  The new algorithm eliminates the approximation and, therefore, the resulting errors. 

 
Key Words: fast neutrons, inelastic scattering, scattering angle 

 

1. INTRODUCTION 

An algorithm has been developed which accurately determines scattering angles of neutrons emerging from 
inelastic collisions of fast neutrons with stationary target nuclei when the inelastic scattering is treated in a multi-
group energy transfer matrix method in Monte Carlo neutron transport codes.   The new algorithm is based on a 
classic two-body collision kinematics problem, requires no additional nuclear data or approximations pertaining to 
the inelastic scattering treatment, and is simple to implement.   
 

In inelastic scattering, part of the kinetic energy of the incident neutron is expended in increasing the internal 
energy of one or both of the colliding particles.  Changes in the internal energy of the colliding particles are treated 
in various ways in Monte Carlo neutron transport codes, and two common treatments are multi-group energy trans-
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fer matrix methods [1, 2], and discrete compound-nucleus excitation-energy level methods [3, 4].  The new algo-
rithm is designed to replace existing approximations used in the Monte Carlo code RCP01 [1], which uses a multi-
group energy transfer matrix method for fast inelastic scattering.  RCP01 solves neutron and photon transport prob-
lems in three dimensional geometry with the energy treated as a continuous variable. 
 

In the RCP01 multi-group matrix method, a matrix element is equal to the mean number of neutrons appearing 
in an exit energy group per inelastic scattering event in an incident group.  The matrix elements are used to ran-
domly sample the exit energy group.  Within an exit group, the exit energy is sampled uniformly.  An exception is 
for within-group scattering, where the exit energy is constrained to be less than the incident energy.  In the discrete 
excitation-energy level method, fast inelastic scattering is treated in a more detailed way.  The excitation-energy 
levels of the compound nucleus are randomly sampled with probabilities proportional to the relative size of the ine-
lastic cross section for that level.  The exit energy and scattering angle are then determined by formulas appropriate 
to the scattering laws specified in ENDF [5] for that particular reaction.  Either method usually ignores the motion of 
the target nucleus.  While the multi-group matrix methods are somewhat inexact compared to the more rigorous dis-
crete level methods, they have certain computational advantages (e.g., modest amount of nuclear data and faster 
sampling algorithm), and experience has shown that they are sufficiently accurate for a wide variety of fast and ther-
mal reactor (in-core) applications.   
 

The scattering angle of the outgoing neutron emerging from an inelastic scattering can be determined by using 
various angular distribution functions available in ENDF (e.g., functions specified in the center-of-mass coordinate 
system [to be called “the CM system”] for individual discrete excitation-energy levels), or by assuming an isotropic 
scattering in the CM system or even in the laboratory coordinate system [to be called “the LAB system”].  The angu-
lar distribution of inelastically scattered neutrons is somewhat simple over most of the energy range of interest in 
reactor theory.  Up to around 10 MeV a large majority of these neutrons are emitted isotropically (i.e., not only in-
dependent of the azimuthal angle but also independent of the polar angle) − or nearly so − in the CM system for 
many nuclides of interest (e.g., 16O, Zr isotopes, and 235U).  Above approximately 10 MeV, the angular distribution 
tends to become forward peaked and exhibits a scattering pattern similar to that found in elastic scattering at these 
energies (e.g., C and 56Fe).   
 

Multi-group energy transfer matrices for the inelastic scattering can be defined in terms of neutron incident and 
exit energies specified in either the LAB or the CM system.  Currently in ENDF, the inelastic scattering energy 
transfer functions are specified primarily in terms of neutron incident and exit energies given in the LAB system, 
with the energy transfer functions of only a few light nuclides (atomic mass numbers not exceeding 4) described in 
terms of CM energies.  Therefore, the inelastic multi-group energy transfer matrices used in RCP01 are defined in 
terms of neutron energies given in the LAB system.  An accurate determination of the LAB scattering angle in 
RCP01 requires the CM exit energy corresponding to the LAB exit energy sampled from the RCP01 multi-group 
matrix method.  Since a direct transformation of the LAB exit energy to the corresponding CM exit energy was un-
available, RCP01 has used an approximation: the CM exit energy ≈ the LAB exit energy.  This approximation is 
accurate for very heavy targets or for limited conditions of certain neutron energy transfer or scattering angles (Fig-
ure 1).  Otherwise, the approximation is judged inappropriate.  For example, when the CM scattering angle cosine is 
±0.6 for a particular condition, the error in the resulting LAB scattering angle could exceed 10% (Table I and Figure 
3).  Therefore, a new algorithm has been developed to replace the existing RCP01 approximation.  The new algo-
rithm is based on a classic two-body collision kinematics problem, where the LAB scattering angle is formulated 
directly in terms of the CM scattering angle and the LAB exit energy that are readily available from the RCP01 
multi-group matrix method.  No direct computation of or approximation regarding the CM exit energy is necessary. 
 

Even though the principal subject of this paper is the LAB-to-CM exit energy transformation algorithm for fast 
inelastic scattering, the RCP01 multi-group energy transfer matrix method and exit neutron velocity vector determi-
nation methods are briefly described in Sections 2, 3 and 5.  Section 4 presents a complete derivation and discus-
sions of the new algorithm.  Section 6 provides a summary. 

2. MULTI-GROUP ENERGY TRANSFER MATRIX 

The energy transfer matrix used in the RCP01 multi-group inelastic scattering method [1] is described here.  
For computational efficiency, the RCP01 code treats non-elastic (n,2n), (n,3n), and other (n,xn) reactions as a type 
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of inelastic scattering.  A nuclear data library provides the inelastic scattering cross-section data combined with 
those of the (n,2n), (n,3n), and other (n,xn) reactions for each nuclide that undergoes an inelastic scattering.  These 
combined cross-section data are tabulated over inelastic multi-groups 1 through N covering the fast energy range 
(usually above 5.53 keV), with group 1 being the highest energy group and group N being the lowest.  It is assumed 
that no inelastic scattering occurs below 5.53 keV.   
 

Elements of the inelastic scattering matrix for a nuclide are defined in terms of a probability distribution func-
tion in the following manner.  Suppose pn→m is the probability of neutron energy transfer from multigroup n to 
multi-group m during an inelastic scattering.  The probability is determined in accordance with the definition of the 
“combined” inelastic cross section so that the probability can retain the weight gain due to (n,xn) reactions and 
thence its sum can exceed unity as discussed below.  Then matrix elements anm can be obtained in a cumulative 
normalized form as follows:  
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where the summation is performed over exit energy groups g=n through m.  That is, no upscattering is allowed in the 
fast inelastic energy range, and thence the N-by-N inelastic scattering matrix is triangular.  The matrices anm in 
RCP01 are defined in terms of neutron incident and exit energies specified in the LAB system.   
 

The matrix elements give the mean number of neutrons produced in exit multi-groups n through m due to an 
inelastic scattering and neutron-producing (n,xn) events in the multi-group n.  Element anN represents the total num-
ber of neutrons emerging from an inelastic scattering of a neutron having incident energy in multigroup n, which is 
equivalent to the ratio [σin  + 2σn2n  + 3σn3n + · · · ] / [σin  + σn2n  + σn3n + · · · ].  The multi-group average cross sections 
− the inelastic scattering cross section (σin), the (n,2n) cross section (σn2n), the (n,3n) cross section (σn3n), and the 
cross sections for other inelastic reactions − are evaluated in the incident energy group n.  Therefore, anN is unity if 
the (n,2n), (n,3n), or other (n,xn) reactions are not present; otherwise, this quantity is greater than unity and must be 
accounted for in determining the exit weight of the neutron undergoing an inelastic scattering.  For example, a1N≈2.0 
for 235U and a1N≈1.1 for 27Al, where  group 1 extends from 16.5 MeV to 21.2 MeV. 
 

Consider an incident neutron that has been identified as undergoing a scattering reaction, and not a capture or 
fission reaction.  The incident neutron energy E0 measured in the LAB system is known, and corresponding multi-
group n has been identified (See Section 3).  The total microscopic scattering cross section σTs(E0) for the scattering 
nuclide is given by the summation of the elastic scattering cross section σs(E0) and the inelastic scattering cross sec-
tion σin(E0) plus other reactions: 

 
⋅⋅⋅++++= )()()()()( 0302000 EEEEE nnnninsTs σσσσσ  

 
Knowing the scattering nuclide, a random number (ξ) is used to decide whether the scattering is inelastic or 

elastic.  All random numbers ξ or ξi used in this paper are pseudorandom numbers on the interval [0,1), i.e., 0≤ξ<1, 
and obtained from a pseudorandom number generator.  The random number index i is introduced to indicate that 
random number ξi is unique and different from the previous random number ξi-1.  If ξ > [σs(E0) /σTs(E0)], then the 
scattering is inelastic; otherwise, it is elastic.     

3. ENERGY OF EMERGING NEUTRONS IN THE LAB SYSTEM 

The spatial coordinates of a collision point and corresponding material composition at the collision point are 
determined through geometry tracking.  The spatial coordinates, together with the energy (E0), and direction cosines 
of the incident neutron, constitute a description of the incident neutron.  After the collision the exit neutron values 
for the LAB energy and direction cosines are determined (per Section 5), and then the free-flight to the next colli-
sion point is determined.  All exit parameters from the current collision become the incident parameters for the next 
collision.   
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The initial multi-group containing the incident energy is determined first. The incident neutron energy E0 
measured in the LAB system is known and is in multi-group n, i.e., En+1 ≤ E0 < En.  This is done by starting with the 
lower cut-point of the first multi-group (En with n=2), and checking through subsequent lower cut-points, until ine-
quality En+1 ≤ E0 is satisfied. 
 

Following inelastic scattering, the exit-energy group is determined using the energy transfer matrices.  First, 
define RANN = ξ1·anN, where ξ1 is a new random number.  Then determine multi-group m containing the exit energy 
by checking until the inequality RANN < anm is satisfied starting with m=n.  Note that m≥n is always required.  If the 
exit group is different from the initial group, then the exit energy is uniformly sampled within that group.  If the exit 
group and the initial group are the same, then the LAB exit energy is uniformly sampled over the energy range ex-
tending from the incident energy to the lowest energy of the initial group.  That is, when within-group inelastic scat-
tering occurs, the exit energy is not allowed to be larger than the incident energy.  The LAB exit energy E′ is sam-
pled by the following linear interpolation algorithm: 

   
                                   Em and Em+1 are the upper and lower cut-points of multi-group m.   
                                   If m>n, set ETOP = Em.  Otherwise (i.e., m=n), set ETOP = E0.                                       
                                   If m≥2, set ANM1 = an,m-1.  Otherwise (i.e., m=1), set ANM1 = 0.     
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4. SCATTERING ANGLE OF EMERGING NEUTRONS IN THE LAB SYSTEM 

The energy and scattering angle of a neutron emerging from inelastic scattering are sampled independently 
since its initial kinetic energy is not conserved.   When inelastic scattering is assumed isotropic in the CM system, 
the cosine of the scattering angle in the CM system (µc) is sampled uniformly by µc = 2ξ2 – 1.  When the inelastic 
scattering is anisotropic, then angular distribution functions can be used to determine an appropriate µc value.  A 
classic two-body collision kinematics problem is analyzed in this section to formulate the LAB scattering angle in 
terms of µc and the exit energy in the CM system as well as in the LAB system. 
 
4.1   Two-Body Collision Kinematics in Two Coordinate Systems 
 

In the energy region of interest, i.e., the region below ~20 MeV, inelastic scattering takes place primarily 
through the formation and decay of a compound nucleus.  The interaction is analyzed by considering only the kine-
matics of the incoming and outgoing particles and ignoring completely the existence of the compound nucleus as an 
intermediate state.  Also assumed is that the compound nucleus formed by an incoming neutron will emit only one 
neutron.  Calculations of the kinematics of neutron interactions are considerably simplified when the interactions are 
described in the CM system [6].  The target nucleus is assumed to be at rest in the LAB system.  Defined are  
 

                    A = the atomic mass of the target nucleus in units of the neutron mass, 
                    V = the speed of the center-of-mass of the two interacting particles as  
                           observed in the laboratory reference frame, 
                    vc = the speed of the neutron in the CM system before collision, 
                   = the speed of the neutron in the CM system after collision, cv′
                    vL = the speed of the neutron in the LAB system before collision, and 
                   = the speed of the neutron in the LAB system after collision. Lv′

 
By definition, when the target is at rest before the collision, the center-of-mass speed is 
 

                                                                           .
1+

=
A
v

V L                                                                           (1) 
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Expressing the neutron speed v= mE2  in terms of its kinetic energy E and mass m, Eq. (1) yields 
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where E′c is the neutron exit energy measured in the CM system. 
 

In either elastic or inelastic scattering, neutrons emerge at some angle with respect to their incident direction.  
The total momentum of the neutron and the target nucleus in the CM system is precisely zero before and after the 
collision.  Consequently, if only two particles emerge from a collision, they must travel in opposite directions when 
observed in the CM system.  Consider the scattering of a neutron as 
seen below in the LAB system and in the CM system.  Viewed in 
the LAB system, the incident neutron moves with speed vL and 
strikes the nucleus which is initially at rest.  As a result of the colli-
sion, the neutron emerges with speed v′L at angle θL with respect to 
its original direction, and the nucleus recoils in another direction.  
Viewed from the CM system, the neutron (with speed vc) and the 
nucleus are observed to approach each other before collision.  After 
the collision, the scattered neutron (with speed v′c) and nucleus 
leave in opposite directions with the neutron scattering angle θc 
measured with respect to the incident direction.   

 

 
The incident-direction components of the velocity vector of the scat

coordinate systems are therefore related by 
 

                                                               .coscos Vvv ccLL +′=′ θθ    
 
Defining the cosine of the CM scattering angle µc≡cos θc and the cosine o
µL≡cos θL, we can show   
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Depending on how the speed terms in Eq. (4) are transformed to other q
either the CM exit energy or the LAB exit energy, as presented below. 
 
4.2   LAB Scattering Angle in Terms of CM Exit Energy 
 

To determine the ratio of the exit neutron speed in the CM system 
pears in Eq. (4), we apply the law of cosines to the triangle formed by th
v′c, and V shown in the diagram above) to obtain 
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and consequently 
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Substituting Eq. (6) into Eq. (4), we obtain 
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Defining “the CM-energy-mass factor” γc ≡ ( )10 +′ AEE c  and using Eq. (2), we can rewrite Eq. (7) as follows: 
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Equation (8) is analogous, but identical in principle, to one of the scattering formulas presented in Reference 6 

for an inelastic reaction that was prescribed in an excitation-energy level method.  Using Eqs. (2) and (4) and a neu-
tron speed-energy equivalency Lc vv ′′ = EEc ′′ , we can show when µc is very close to zero that µL ≈ γL, where 

γL≡ ( )10 +′ AEE .  We shall call γL “the LAB-energy-mass factor”.  Equation (8) can also be applied to elastic 
scattering with the target at rest where γc reduces to the well-known “inverse-mass factor” A−1, the ratio of the mass 
of the neutron to that of the target.  This is because the kinetic energy of the neutron in CM system is unaltered by 
the elastic scattering.   
 
4.3   RCP01 Approximation of CM Exit Energy 
 

When the inelastic multi-group energy transfer matrix for a target nuclide used in a Monte Carlo code is de-
fined in terms of LAB neutron energies, the matrix does not provide E′c values, and thus γc is not known.  The 
RCP01 code uses an approximation to the CM-energy-mass factor γc in Eq. (8):  
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where E′ (the exit energy in the LAB system) has replaced E′c in the definition of γc.  The cosine of the LAB scatter-
ing angle defined in Eq. (8) and determined using the Eq. (9) approximation for γc will be called µ̃L.  This approxi-
mation is accurate for very heavy targets (A>>1) and for certain values of µc, as demonstrated in Figure 1.  Other-
wise, the approximation is inadequate.  Certain Monte Carlo codes that use multi-group energy transfer matrix 
methods use even simpler approximations: The MCU code assumes that the inelastic scattering is isotropic in the 
LAB system (i.e., µL=2ξ –1).  MCU was developed at Kurchatov Institute in Russia for reactor design applications 
and uses a group transfer matrix approach like the one employed in RCP01 and RACER.  In its multi-group mode 
calculations, the VIM code [4] approximates within-group inelastic scattering as elastic scattering in which no en-
ergy is lost, and assumes out-of-group inelastic scattering to be isotropic in the LAB system.   
 

Inserting Eq. (2) into Eq. (6) and using the definition of γc, we can obtain a useful formula that can transform 
the exit neutron energy determined in the CM system (E′c) to the corresponding exit energy in the LAB system (E′): 

 
                                                                                                               (10) .)12( 2 ++′=′ ccccEE γµγ

 
Using the relationship EEc ′′ = cL γγ , Eq. (10) yields a relationship between the two energy-mass factors γc and 
γL: 
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The ratio cL γγ is close to unity for any µc value when γc approaches zero (e.g., for inelastic scattering with an 

infinitely heavy target or for a small change in neutron energy) or for certain negative µc values that meet a condition 
µc= −0.5 γc.  For positive µc values, γL is always smaller than γc.  Characteristics of the cL γγ ratio are depicted in  
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                        (b) Contour Plot of cL γγ  

 
Figure 1 

Comparison of the LAB and CM Energy-Mass Factors γL and γc

1

 
 

Table I.  Error in LAB Scattering Angles Due to CM Exit Energy  
Approximated by LAB Exit Energy 

Selected 
Input 

LAB Scattering Angle  
(degrees) 

Error in LAB Scattering Angle 

µc γc

γL 
from  

Eq. (11) True 
(cos−1 µL) 

Approximate * 
(cos−1 µ̃L) 

degrees percent 

0.6 0.9 0.5294 28.1 35.3 7.2 25.6 
0.6 0.7 0.4586 31.6 37.1 5.5 17.4 
0.6 0.5 0.3676 36.0 39.6 3.6 10.0 
0.3 0.7 0.5065 43.6 49.8 6.2 14.2 
0.6 0.1 0.0941 48.8 49.1 0.3 0.6 
0.3 0.5 0.4016 50.0 53.7 3.7 7.4 
0.0 0.7 0.5735 55.0 60.2 5.2 9.5 
0.0 0.5 0.4472 63.4 65.9 2.5 3.9 
−0.6 1.0 1.1180 63.4 57.1 −6.3 −9.9 
−0.3 0.7 0.6767 67.3 68.5 1.2 1.8 
−0.6 0.9 1.0533 69.4 60.5 −8.9 −12.8 
0.0 0.3 0.2873 73.3 74.0 0.7 1.0 
−0.3 0.5 0.5130 78.2 77.4 −0.8 −1.0 
−0.6 0.7 0.8682 82.9 71.5 −11.4 −13.8 
0.0 0.01 0.0100 89.4 89.4 0.0 0.0 
−0.6 0.5 0.6202 97.1 88.6 −8.5 −8.8 
−0.6 0.1 0.1060 122.0 121.7 −0.3 −0.2 
−0.8 0.1 0.1085 139.4 139.1 −0.3 −0.2 
−0.9 0.2 0.2425 148.1 146.5 −1.6 −1.1 
−0.95 0.2 0.2462 157.4 156.1 −1.3 −0.8 

* µ̃L from Eq. (8) with γc replaced with γL determined by Eq. (11) using the given data µc and γc. 
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γ c 
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Figure 1 as a function of µc and γc.  The contour plot (b) in Figure 1 shows a sequence of 27 equally-spaced contours 
(i.e., space=0.1) of γL/γc values ranging from 0.25 to 2.95 shown in the three-dimensional plot (a), with the left-most 
“T-shaped” green region that includes the γc≈0 realm being 0.95< cL γγ <1.05.  
 

An evaluation of the LAB scattering angles determined by Eqs. (8) and (11) for selected µc and γc data is pre-
sented in Table I.  The evaluation data are presented in ascending order of the true LAB scattering angle given in the 
fourth column.  For a given set of arbitrary µc and γc data, a corresponding γL value is determined by Eq. (11).  The γc 
value was used in Eq. (8) to determine a “true” µL value, while the γL value was used in Eq. (8) to determine an “ap-
proximate” cosine value µ̃L.  When µc ≈ ±0.6, the error in the approximate scattering angle (cos−1 µL̃) exceeds 10% 
for certain scattering conditions set by γL (i.e., depending on the target mass and the neutron energy transfer).  

 
Since Eq. (11) is a second order equation in γc, one can solve the equation for γc in terms of γL and µc, first de-

termine γc+µc, and then determine µL using Eq. (8).  However, the resulting γc formula can cause numerical difficul-
ties if γL is very close to unity.  Therefore, a direct µL solution that is computationally more efficient is developed by 
deriving a relationship between γc and γL.   

 
4.4   LAB Scattering Angle in Terms of LAB Exit Energy   
 

When Eq. (2) is inserted into Eq. (4), we have 
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which is transformed to, when each term is divided by vL / (A+1), 
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Since the neutron speed v equals to mE2  for its kinetic energy E and mass m, Eq. (13) yields a relationship be-
tween γc and γL:  
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or 
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Inserting Eq. (14.b) into Eq. (8) produces the following quadratic equation for µL: 
 

                                                                                     (15) .0)1()1(2 22222 =−−+−− ccLLcLL µµγµµγµ
 
Solving this equation for µL, we can obtain a new formula for the cosine of the LAB scattering angle µL: 
 

                                                   .)1(1)1( 222
cLccLL µγµµγµ −−±−=                                            (16) 

 
Figure 2 compares the true LAB scattering angle cosine (µL) computed by Eq. (16), shown in plot (a), with the 

approximation (µ̃L) made by Eqs. (8) and (9), shown in plot (b), which is the approximation used in RCP01.  The 
cosine values are depicted as a function of γL and µc, where the range of γL is limited to 0~1.  When γL

 approaches 
zero in Eq. (15), we see µL ≈µc and µ̃L ≈µc in the plots, a case when the LAB scattering angle is accurately approxi-
mated by the CM scattering angle.  This is an approximation that is used in the RACER Monte Carlo code [2] for 
any γL

 value. 
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                    (a) True µL, as given by Eq. (16) 
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Figure 2 

Comparison of True µL with Approximate µ̃L as a Function of µc and γL
 
 
 

Figure 3 shows errors in µ̃L in plot (a) as well as errors in cos−1 µL̃ in plot (b) that are incurred by the RCP01 
approximation, relative to the true µL value formulated by Eq. (16).  When the target nucleus is very heavy or the 
change in the neutron energy is very little and thus γL

 approaches zero, the approximation is adequate as discussed 
before.  Figures 2 and 3 indicate that the RCP01 approximation is also adequate when the incident neutron scattering 
angle is small, i.e., µL ≈1 as well as µ̃L ≈1 whenever µc ≈1.  The approximation, however, can significantly mispredict 
certain exit neutron directions, especially at CM scattering angles ~80o (µc ≈ 0.1) and ~150o (µc ≈ −0.9), as shown in 
Figure 3-(c).  The discrepancy between the true and approximate LAB scattering angles gradually increases as the µc 
value approaches zero (from the positive side), where the error in the approximate µL̃ value becomes as large as 
~30% (corresponding to an over-prediction by ~40o in the LAB scattering angle when µc ≈ 0.1 and γL ≈1).  When the 
µc value turns negative (i.e., backward scatterings in the CM system), the error in the approximate LAB scattering 
angle also becomes significant at certain values of γL, e.g., an under-prediction by ~60o  when µc ≈0.9 and γL ≈1.   
 

The errors in the approximate LAB scattering angle determined in Table I for selected inelastic scattering con-
ditions are identical to those shown in Figure 3-(c) for corresponding µc and γL values.  Computing µL using Eq. (16) 
and its acceptance require certain conditions depending on the magnitude of γL and µc, as discussed in Section 4.5. 
 
4.5   LAB-Energy-Mass Factor γL Exceeding Unity  
 
Equation (16) is valid only for [1−γL

2 (1−µc
2)] ≥ 0.  Since the (1−µc

2) term can be as large as unity, the [1−γL
2(1−µc

2)] 
term can become negative when γL exceeds unity.  The value of γL can exceed unity only when a neutron undergoing 
an inelastic scattering with a target of mass number A loses its kinetic energy by a factor of at least (A+1)2, a condi-
tion which is rare.  Inelastic scattering cannot occur unless the CM incident neutron energy is greater than the energy 
of the first excited state in the target nucleus.  For an extreme case where the upper bound of the incident energy E0 
is ~20 MeV and the lower bound of the LAB exit energy E′ is 5.53 keV, the mass number of the heaviest target nu-
clide that can result in γL >1 is 59.  Lighter targets could cause the negativity problem when γL exceeds unity, which 
could occur for inelastic scattering from energy levels that are comparable to the kinetic energy of the incident neu-
tron.  For heavier targets such as zirconium or uranium isotopes, however, the possibility of having γL >1 is ex-
tremely low.   
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(a) Error in Approximate µL̃,  
       ∆µL = µL̃  − µL
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(b) Error in Approximate Angle (θ̃L = cos−1 µ̃L), 

∆θL = θ̃L − θL in degrees 
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(c) Contour Plot of the Error in θ̃L, degrees 
     
     This contour plot shows a sequence  
     of 22 equally-spaced contours (i.e.,  
     space=5o) of the error in the LAB  
     scattering angle, θ̃L = cos−1 µ̃L,  
     approximated by Eq. (9) and ranging  
     from −60o to 40o.  The straight line that  
     starts at µc= 0 represents a linear  
     relationship µc= −0.5 γL, where γL equals 
     to γc, and, therefore, the approximation  
     results in no error along the line.  The  
     regions above and below the straight  
     line represent over-estimates and under- 
     estimates of inelastic scattering angles,  
     respectively.   

 

Figure 3 
 Error in Approximate µ̃L and in cos−1 µ̃L Due to Approximation of γc by Eq. (9),  i.e., γc ← γL
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When γL is greater than unity in Eq. (16), it places a limitation on the range of acceptable values of the cosine 
of the CM scattering angle µc:   

 

                                         Γ ≤ µc ≤1 for positive µc values, where Γª 21 −− Lγ , and                                                                                  
                                         −1 ≤ µc ≤ −Γ for negative µc values.                                                           
 
That is, whenever γL>1 and a µc value sampled falls in the range (−Γ, Γ), the µc value must be rejected and a new µc 
value shall be sampled until a new value satisfies the acceptable range limitation.   
 

Re-sampling of µc could be computationally intensive, especially when γL>>1 and the range of valid µc is con-
fined to a narrow band close to either +1 or −1.  The band subtends µc either between −1 and –Γ for µc<0 or between 
Γ and +1 for µc>0.  To overcome this drawback, a procedure has been developed to transform the original µc value 
sampled from the (−1, 1) range into the narrow band close to either −1 or +1.  Applying a linear transformation 
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scheme between ranges (−1, 0) and (−1, –Γ), or between ranges (0, +1) and (Γ, +1), we get the µc value re-cast into 
the narrow bands as follows:   
 

                                                If µc<0, then  µc ←  µc – (1 + µc) Γ, and 
                                                if µc≥0, then  µc ←  µc + (1 – µc) Γ.                                                         

 
This transformation scheme will cause exit neutrons to be biased somewhat toward the incident direction 

(µc=1, i.e., directly forward) and the opposite direction (µc = –1, i.e., directly backward) when observed in the CM 
system.  One of the conditions, Γ ≤ µc ≤1 imposed here for positive µc values, however, will no longer be necessary 
because µc must not be positive whenever γL exceeds unity as discussed further in Section 4.6. 
 

As discussed before, the condition of having γL >1 is extremely rare even with light targets.  For example, when 
an incident neutron of 11 MeV kinetic energy undergoes an inelastic scattering with a boron isotope (11B nucleus), 
the probability of seeing an emerging neutron of ~24 keV kinetic energy or smaller that results in γL >1.77 is only 
~0.001.  For the same incident condition, the probability of having γL > 0.81 (corresponding to exit energy ~116 
keV) is ~0.01.  Therefore, the conditions discussed here for γL >1 may be ignored, and the inelastic scattering that 
results in γL >1 may be completely ignored and a new collision process can start. 
 
4.6   Dual Quantity of µL Value  
 

The dual nature of µL due to the presence of the ±|µc| term in Eq. (16) requires special attention.  Equation 
(14.a) implies an important condition on µc  and µL since both γc and γL are positive, namely    

 

                                                                           .0>
− LL

c

γµ
µ

                                                                    (17) 

 
This condition implies that (i) when µc is positive, [µL − γL] must be positive, and (ii) when µc is negative, [µL − γL] 
must be negative.  One particular case of condition (ii) is that when γL is greater than unity, the [µL − γL] term be-
comes negative, and thence µc needs to be negative.  Therefore, whenever γL exceeds unity, any positive µc must be 
discarded and a negative µc should be sampled.  An alternative is to discard both the exit energy in the LAB system 
(E′) and the positive µc, and then sample a new set of E′ and µc until they together satisfy all conditions.  Conse-
quently, one of the conditions, Γ ≤ µc ≤1 imposed earlier in Section 4.5 for positive µc values when γL>1, is no 
longer necessary.   
 

The transformation of Eq. (14.a) to Eq. (14.b) was preconditioned by necessary conditions µc ≠ 0 and µL − γL ≠ 
0, and, therefore, Eq. (16) is subject to the same conditions.  When γL = 1, Eq. (16) yields µL = 1− µc

2 ± µc
2, that is, 

either µL = 1 or µL = 1−2µc
2.  Since µL = γL is valid only when µc = 0 and since µL ≠ γL is required for arbitrary non-

zero µc values, a general solution of µL for γL = 1 should be µL = 1−2µc
2, and not µL = 1.  This requires the ±|µc| term 

be reduced to +µc.  This requirement results in a modification of Eq. (16) as follows:   
 

                                                .)1(1)1( 222
cLccLL µγµµγµ −−+−=                                           (18) 

 
When µc is very close to zero (e.g., −10−3< µc <10−3), Eq. (14.a) is used to set µL = γL.  It is not difficult to demon-
strate that Eq. (18) meets the two conditions (i) and (ii) implied above by Eq. (17) for positive and negative µc val-
ues, respectively.  The conditions and procedures pertaining to the application of Eq. (18) are illustrated in Figure 4.     

 
To complete the collision process, we need to determine direction cosines of the velocity vector of the neutron 

emerging from inelastic scattering.  Since the direction cosines are not the subject of this paper, they are presented 
below for information only. 

5. DIRECTION COSINES OF EXIT NEUTRON VELOCITY VECTOR 

Incident direction cosines Ωx, Ωy, and Ωz are defined as the cosine of the angle between the incident neutron ve-
locity vector and the Cartesian x, y, and z axes, respectively, of a reference frame where the collision site is located  
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    Determine E′ from an energy transfer matrix, and compute γL = ( )10 +′ AEE .     
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Figure 4 
Sampling of LAB Scattering Angle Cosine µL

 
 
 
at the origin of the coordinate frame.  The azimuthal angle φ is assumed isotropic.  This assumption is justified be-
cause most scattering media of interest are isotropic in composition, and hence there is no preference toward any 
particular value of φ.  The azimuthal angle is sampled uniformly in the range of [0, 2π) by φ =2π ξ3. 
 

The exit direction cosines Ω£
x, Ω£

y, and Ω£
z of the neutron velocity vector relative to the Cartesian x, y, and z 

axes, respectively, are determined in terms of µL, φ, and incident direction cosines Ωx, Ωy, and Ωz as follows: 
 

( )

( ) ),sincos(

),sincos(

,cos

ϕϕµ

ϕϕµ

ϕµ

yzxxLzLz

zyxxLyLy

xLxLx

CC

andCC

CC

Ω+ΩΩ+Ω=Ω′

Ω−ΩΩ+Ω=Ω′

−Ω=Ω′

 

 

where CL ª |1| 2
Lµ−  and Cx ª |1| 2

xΩ− .  The absolute value under the square root of CL and Cx is introduced 
to avoid possible round-off errors when µL or Ωx is close to unity or slightly exceeds unity even though such occa-
sions would be extremely rare.  Constant CL should be set to zero whenever the value of [1− µL

2] becomes negative.  
For values of |Ωx| very close to unity (e.g., |1− Ωx

2| < 10−3), alternative formulae should be used to avoid machine 
round-off errors.   
 

6.    SUMMARY AND CONCLUSIONS 
 

An algorithm is developed which accurately determines scattering angles of neutrons emerging from inelastic 
collisions of fast neutrons when the inelastic scattering is treated in a multi-group energy transfer matrix method.  
The development was designed to improve an existing approximation used in the RCP01 code.  The new algorithm 
is based on a classic two-body collision kinematics problem.  It has been developed with no approximations, and is 
accurate and easy to implement.  A multi-group energy transfer matrix method used in the RCP01 code has been 
outlined.  The accuracy improvement of the new algorithm is noticeable in inelastic scattering with light targets es-
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pecially when neutrons lose a large portion of their incident energy.  The current RCP01 approximation is adequate 
for relatively heavy target nuclides, however, the approximation can significantly mispredict certain exit neutron 
directions. 
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