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ABSTRACT  

Most energy deposition detectors that are used in physics, such as multichannel 
analyzers, are pulse-height detectors. Monte Carlo pulse-height tallies (PHTs) are difficult to 
model because most energy-dependent tallies score events at the energy of the projectile particle 
rather than score the number of events that deposit different amounts of energy. In particular, 
PHTs usually require that the entire Monte Carlo simulation be performed in an analog mode 
without variance reduction. Thus, the benefits of variance reduction, which may speed a 
calculation by orders of magnitude, are unavailable. 
 

A new recursion method has been developed to enable efficient use of PHTs with 
variance reduction based on T. E. Booth’s deconvolution method. The new method differs from 
other Monte Carlo deconvolution attempts because it is minimally invasive to the infrastructure of 
the Monte Carlo code: a single subroutine is called in a few places, and only a single line of 
initialization is required in a few other places. Data-storage requirements are localized, and 
calculations that are not using the new algorithm are unaffected. Testing has demonstrated that the 
new method reproduces analog PHTs to within statistical uncertainty (1%–3%) and can be faster 
by orders of magnitude. 
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1 INTRODUCTION 

A new recursion method has been developed to enable the efficient use of pulse-height 
tallies (PHTs) with variance reduction and has been implemented into MCNPX [1]. The new 
method is based on T. E. Booth’s deconvolution method [2]. The new method differs from other 
Monte Carlo deconvolution attempts [3] because it is minimally invasive to the infrastructure of 
the Monte Carlo code: a single subroutine is called, and only a single line of initialization is 
required in a few places. Data-storage requirements are localized, and calculations that are not 
using the new algorithm are unaffected. Results are presented for photon, photon/thick-target 
bremsstrahlung (TTB), and coupled electron-photon problems, demonstrating a significant 
improvement in efficiency over analog-only Monte Carlo in a production Monte Carlo computer 
code. 

1.1 Pulse-Height Detectors 

 Pulse-height detectors count the number of pulses of differing amounts of energy 
deposited in a crystal.  

Because electrons and photons scattering through a material have signatures 
characteristic of the material, pulse-height detectors, which precisely identify the energy of the 

mailto:jxh@lanl.gov
mailto:gwm@lanl.gov


J. S. Hendricks and G. W. McKinney 

incident particle, can identify the materials through which the radiation scatters. Consequently, 
pulse-height detectors are used widely in many applications, from outer space (where they are 
used on satellites to determine the composition of nearby planets and moons) to deep 
underground (where they are used on oil-well logging tools to determine the location of oil and 
gas deposits). Pulse-height detectors also are used for nondestructive analysis, nuclear 
safeguards, homeland security, and many other applications. 

1.2 Pulse-Height Tallies 

Radiation transport codes are used to model nuclear detectors because radiation is 
dangerous and because detectors often are needed in hostile and remote environments such as 
outer space or underground. Deterministic transport codes cannot simulate PHTs accurately, but 
the Monte Carlo method can. Pulse-height detectors are modeled with PHTs. Monte Carlo 
methods simulate contributions from multiple particle segments, which are combined to produce 
a signal. A typical PHT spectrum for 10-MeV photons passing through limestone is illustrated in 
Fig. 1. The ordinate (x-axis) is the size of various energy pulse bins. The abscissa (y-axis) is the 
number of pulses counted for each of these bins normalized by bin width. The peak at 10 MeV 
corresponds to photons entering the pulse-height detector and depositing all their energy. The 
peak at 9.5 MeV is the first escape peak corresponding to 10-MeV photons entering the detector, 
with only a single pair-production photon escaping. At 9 MeV is a smaller double escape peak 
corresponding to both pair-production photons escaping. At 0.5 MeV is a peak from pair-
production photons in the limestone entering the detector and depositing all of their energy there. 

 PHTs are very different from standard Monte Carlo tallies. A Monte Carlo current tally is 
illustrated in Fig. 2. The current tally counts the number of particles entering into the same PHT 
region. The total PHT pulse, summed over all PHT energy bins, is the same as the net current of 
the current tally (number of particles entering less those leaving). However, the energy 
distributions are very different. The PHT bins represent different amounts of energy deposited, 
as in a pulse-height detector. The current tally energy bins are merely the energies at which 
particles enter (or leave) the outer surface of the pulse-height detector region. The PHT and 
current tally are superimposed upon each other in Fig. 3 to show their dissimilarity. The escape 
peaks, and much of the other energy deposition information from the PHT is lost. Track-length 
or collision-estimator energy deposition tallies (not illustrated) are even more dissimilar to PHTs 
because the tally energies are those at which the tally is made; the tally is not the actual energy 
deposited. 

The difference between PHTs and other tallies can be illustrated by the Monte Carlo 
random walk of Fig. 4 (taken from T. E. Booth [1]). The P’s represent physical events (nodes 1, 
4, 6, and 7), and the V’s represent variance reduction splits (nodes 2, 3, 5, and 8). Suppose the 
initial particle energy is E0 and that the other energies, E1, E2, …, along each branch are the 
energies lost along those segments. Further, suppose that segments 7, 8, 12, and 13 are totally  
 

 

American Nuclear Society Topical Meeting in Monte Carlo, Chattanooga, TN, 2005 2/8 
 



Pulse-Height Tallies with Variance Reduction 

 
 Figure 1. Pulse-height spectrum of 10-MeV photons in limestone. 
 
 

 
 

Figure 2. Current tally of 10-MeV photons in limestone.  
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 Figure 3. Comparison of PHT and current tally of 10-MeV photons in limestone. 
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 Figure 4. PHT “tree”—Monte Carlo random walk. 
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within the pulse-height detector. Then the current tally would have two bins, where W and EB 
indicate scoring weight and energy bin as 
 

W1 = 1/3 ; EB1 = E0 – E1 – E2 – E6 = E7 + E8 
W2 = ½ ; EB2 = E0 – E1 – E10 – E11 = E12 + E13. (1) 

 
The PHT would have one bin: 
 
 W7 = 1/6 ; EB7 = E7 + E8 + E12 + E13. (2) 
 
It is evident that the current tally [Eq. (1)] is very different from the PHT tally [Eq. (2)]. 

Further, the current tally is easy to compute. W1 and W2, and EB1 and EB2 are simply the 
weights and energies of the particles crossing into the pulse-height-detector tally region. 
However, for the PHT, the tally can be made only after the entire history is complete and the 
entire random walk, or PHT tree, can be deconvolved. The full deconvolution of the tree 
(assuming that all segments are within the PHT) in Fig. 4 is 

 
W1 = 1/12 ; EB1 = E1 + E2 + E3 + E4 + E10 + E11 + E12 + E13 
W2 = 1/24 ; EB2 = E1 + E2 + E3 + E4 + E10 + E14 + E15 + E16 + E18 
W3 = 1/24 ; EB3 = E1 + E2 + E3 + E4 + E10 + E14 + E15 + E17 + E18 
W4 = 1/12 ; EB4 = E1 + E2 + E3 + E5 + E10 + E11 + E12 + E13 
W5 = 1/24 ; EB5 = E1 + E2 + E3 + E5 + E10 + E14 + E15 + E16 + E18 
W6 = 1/24 ; EB6 = E1 + E2 + E3 + E5 + E10 + E14 + E15 + E17 + E18 
W7 = 1/6 ; EB7 = E1 + E2 + E6 + E7 + E8 + E10 + E11 + E12 + E13 
W8 = 1/12 ; EB8 = E1 + E2 + E6 + E7 + E8 + E10 + E14 + E15 + E16 + E18 
W9 = 1/12 ; EB9 = E1 + E2 + E6 + E7 + E8 + E10 + E14 + E15 + E17 + E18 
W10 = 1/6 ; EB10 = E1 + E2 + E9 + E10 + E11 + E12 + E13 
W11 = 1/12 ; EB11 = E1 + E2 + E9 + E10 + E14 + E15 + E16 + E18 
W12 = 1/12 ; EB12 = E1 + E2 + E9 + E10 + E14 + E15 + E17 + E18 
 
If branches 7, 8, 12, and 13 are the only branches in the pulse-height detector, then all of 

the other energies are not counted and the result is EB7 = E7 + E8 + E12 + E13, as provided in 
Eq. (2). 

1.3 The Challenge of Pulse-Height Tallies 

Most Monte Carlo computer codes require analog transport (no variance reduction) for 
PHT problems. Without variance reduction techniques (VRTs) to accelerate Monte Carlo 
convergence, some problems can take many times longer to run in the analog mode—even 
orders of magnitude longer. However, variance reduction generally has not been implemented 
for PHTs in Monte Carlo codes because of its difficulty. Booth suggested several possible 
methods years ago [4]. We believe that the best of these approaches is deconvolution, as 
illustrated previously. Deconvolution has not been available in a major Monte Carlo code until 
now because of its complexity. The deconvolution approach requires the following. 

 
1. Reconstruction of the entire random walk into a deconvolution PHT tree. This 

reconstruction can require recording every event of the random walk, which clutters 
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up a Monte Carlo code greatly by having PHT coding spread throughout the code. 
Further, constructing the tree can result in huge trees requiring huge amounts of 
storage with constantly changing memory requirements. Also, the entire tree must be 
put into the “bank,” with every particle split so that it can be retrieved properly by 
subsequent branches of a split. 

 
2. Deconvolution of the tree. The deconvolution algorithm can be complex and time 

consuming. Further, the tree shown in Fig. 4 is used for splitting only. It becomes far 
more complex for Russian roulette and other variance reduction methods. 

 

2 IMPLEMENTATION OF PULSE-HEIGHT TALLIES WITH VARIANCE 
REDUCTION TECHNIQUES 

The PHT deconvolution method has been implemented into MCNPX [1] and works with 
most VRTs. MCNPX is a successor code to the popular general-purpose Monte Carlo MCNP4A, 
MCNP4B, and MCNP4C [5] codes. Indeed, MCNPX is a superset of MCNP4C3 and tracks it 
identically. However, MCNPX extends MCNP4C much further [6], now including the recent 
addition of PHTs with variance reduction. 

 
The implementation of PHTs with VRTs in MCNPX does not congest the code with copious 
PHT logic to record the deconvolution tree. A single subroutine is called at seven key places. 
Further, the entire deconvolution tree need not go into the “bank” at each particle split. Only one 
bank word is required for the MCNPX implementation, and only four words total are added to 
the code common blocks. Thus, the PHT with VRTs has a minimal impact on Monte Carlo 
problems when it is not used, and it has a very isolated logic when it is used. The single routine 
is admittedly quite complex, with seven cases (similar to entry points) and several dynamically 
adjusted storage arrays that can become large. However, the complexity of the algorithm was 
minimized by the development of a novel regression technique: the tree is deconvolved from the 
bottom up using a Fortran recursion routine. 

 
Among many innovations in the MCNPX implementation are the following. 

 
1. The entire PHT tree need not go into the bank at every particle split. All that is 

necessary is an index that allows the tree to be “resumed” for particles coming out of 
the bank. 

 
2. Not all tree information must be saved—only the 

a. event type at each tree branch, 
b. incoming particle weight at each tree branch, 
c. energy and weight at track termination, and 
d. energy entering and exiting the PHT. The energy deposited  along each branch of  

 the tree is not required (Booth method). 
 

3. At physical splits, all of the energy deposited so far can be associated with the main 
branch of the tree and zero energy with the subsequent branches. The arbitrary 
allocation is possible because in the deconvolution, the energies from the branches of 
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a split are all added together again. In this way, all physical split particles coming out 
of the bank do not need to be associated with the energy deposited up to that point, 
thus greatly simplifying bookkeeping in constructing the deconvolution tree. 

 
4. Branches of the deconvolution tree can undergo Russian roulette if the tree gets too 

large. 

3 RESULTS 

PHTs with variance reduction are now available in MCNPX. The following variance 
reduction methods are available: importance sampling (geometric splitting and Russian roulette), 
weight windows (both cell and mesh based), forced collisions, and exponential transform. 
Analog capture rather than implicit capture is required because it is more efficient and avoids 
rouletting of entire PHT trees. DXTRAN is under development. Currently, the PHTs may be 
used for photon-only problems, photon transport with the TTB approximation, and fully coupled 
photon-electron transport. 

 
Figure 5 illustrates the results for a pulse-height detector embedded in limestone. Three 

pairs of curves can be seen. Each pair is the analog and weight window result; these curves lie on 
top of each other, demonstrating that the PHT provides the same results with and without  
 

 

  

Figure 5. Comparison of analog and weight window results for photon-only, TTB, and full-electron 
transport. 
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variance reduction. The three pairs of curves are seen for photon-only transport (black-blue: 
bottom), photons with TTB (red-green: top on left and middle on right), and full electron-photon 
transport (yellow-purple: middle on left and top on right). To obtain an analog comparison result 
that converges in a reasonable amount of time, knock-on electrons are turned off. 
 

The speedup resulting from variance reduction is highly problem dependent. For some 
problems, the analog case is faster because of the effort involved in deconvolution or because 
Russian rouletting of very large PHT trees causes weight fluctuations that increase the variance. 
However, in other problems, particularly those where variance reduction improves the efficiency 
of standard tallies such as the current tally, the new method is much more efficient. Improvement 
in factors up to 80 in the “figure-of-merit” measure of problem efficiency has been observed. 
Even better results are anticipated with further refinements in the method. 

4 CONCLUSIONS  

 PHTs with variance reduction have been implemented into MCNPX using Booth’s 
deconvolution method but have been engineered to (1) have minimal code impact on problems 
without PHTs; and (2) be unobtrusive, fast, and compact when used with pulse-height problems. 
Major variance reduction methods are available, and the method works for photon-only, photon-
plus-TTB, and full photon-electron transport. The method is being extended to other particle 
types and variance reduction methods. Comparisons with analog transport give excellent 
agreement for many problems. 
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