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ABSTRACT 

  
Recently, a new method using Fourier transform has been introduced in place of the conventional 
method in order to reduce the time required for the measurement of moderator temperature coefficient 
in Japanese PWRs. The basic concept of these methods is to eliminate noise in the reactivity signal. 
From this point of view, wavelet analysis is also known as an effective method. The basic idea of the 
reactivity coefficient estimation is similar to that for Fourier transform procedure in which the 
analyzed reactivity component is divided by the analyzed component of the relevant parameter. We 
carried out numerical simulations of moderator temperature coefficient measurement by using wavelet 
transform and good results were obtained. Using this method we estimated moderator temperature 
coefficient for measurement data in actual PWRs. The results have proved that the method is 
applicable for estimation of moderator temperature coefficients in the actual PWRs. It is expected to 
reduce the required data length during the measurement. We expect to estimate the other reactivity 
coefficients with the data of short transient.   
  
  

1.INTRODUCTION 

  

Moderator temperature coefficient is defined as the reactivity change per unit moderator temperature 

change. In PWRs it is usually measured at each start up after refueling. A new method using Fourier 

transform has been introduced1) in place of the conventional linear fitting procedure to reduce the 

time required for the measurement 2) , 3) .  

  

On the other hand wavelet analysis can analyze time-frequency localization. In time-frequency 

localization we can analyze not only frequency but also the time dependent frequency distribution. 

Some authors have reported the wavelet analysis in the nuclear reactor physics 4) , 5) or power plant 

application 6) , 7) , 8) . In the latter the wavelet transform is used to eliminate signal noise and this 

concept is similar to that of the moderator temperature coefficient measurement using linear fitting 

procedure or Fourier transform. 
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We carried out numerical simulations of moderator temperature coefficient measurement by using 

wavelet transform and good results were obtained9). Using this method we evaluated moderator 

temperature coefficient for measurement data in actual PWRs. The results have proved that the 

method is applicable for estimation of moderator temperature coefficients in the actual PWRs. It is 

expected to reduce the required data length during the measurement. 
  
  

2.BASIC THEORY OF WAVELET TRANSFORM 

    

In wavelet transform analysis a function is expressed as the sum of sub-functions of level j, which 

indicates the number of decomposition process. Basic theory of wavelet transform is introduced as 

follows; 

  

Firstly, two basic functions, Scaling Function )(xφ  and Wavelet function )(xψ  are defined, which 

satisfy so called “two-scale relation”. 

∑ −=
k

k kxpx )2()( φφ                                                      (1)    

∑ −=
k

k kxqx )2()( φψ                                                      (2) 

where kp , kq  are given and k  is an integer. 

With the scaling function )(xφ  defined, sub-function of level j are determined as  

)2( kxj −φ .                                                               (3)  

It changes the frequency of the scaling function )(xφ  by 2 j times and translates the position on the 

x-axis in parallel.  

Then arbitrary function )(xf j  can be expressed as  

∑ −=
k

jj
kj kxcxf )2()( )( φ .                                                  (4) 

And with the wavelet function )(xψ  defined, arbitrary function )(xg j  can be also expressed as  

∑ −=
k

jj
kj kxdxg )2()( )( ψ .                                                 (5) 

With regards to these functions, the following relations hold. 

)()()( 11 xgxfxf jjj −− += .                                                  (6) 

In other words function )(xf j  is decomposed to )(1 xf j −  and )(1 xg j− . This relation is used 

recursively and we get following expression. 

)()(.....)()()( 121 xfxgxgxgxf jnjjjj −−−− ++++= .                            (7) 

This means that any function )(xf  can be expressed as a sum of functions )(xg j  for infinite j. 

That is  
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The expansion coefficients 
)( j

kc  and )( j
kd  are determined according to the basic requirement for 

the scaling function and wavelet function. The fundamental expansion coefficients are already 

evaluated for various scaling functions and wavelet functions10). In the data analysis we selected the 

wavelet function of Cardinal B Spline of the order 4 from the point that the computation is simple 

and the frequency resolution is good, which is given as follows;  

      kp  ; 0p  = 1/8 , 1p =1/2 , 2p =3/4 , 3p =1/2 , 4p =1/8 

      kq  ; 0q  = 10q  = 1/40320 , 1q  = 9q = -31/10080 , 2q = 8q = 559/13440 

           3q = 7q = -247/1260 , 4q = 6q = 9241/20160 , 5q = -337/560 

The functions are plotted in Fig. 1 and 2, respectively. 

           

  

  

  

  

  

  

  

  

  

Fig.1 Scaling function )(xφ  

  
  
  
  
  
  
  
  
  

Fig.2 Wavelet function )(xψ  
                        

The expansion coefficients )( j
kc  and )( j

kd  are calculated recursively using 
)0(

kc and the 

decomposition sequences kg  and kh  as follows;  

∑ −+=
l

lkk lfc )(2
)0( β ,                                                  (9) 

where 

     ( ) 0233 ≈−=
k

kβ    for  5>k  ,                                  (10) 

  )(lf ; discrete values of function )(xf  at x = l .  

Then )( j
kc  and )( j

kd  are obtained as 
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The decomposition sequences kg  and kh are analytically obtained according to the basic 

requirements for the scaling function and wavelet function such as normalization. In this analysis we 

used the given sequences in reference 10). 

In summary, when time-frequency localization is carried out the following steps are taken. 

(1) Input time sequence data )(lf ; nl ≤≤0  

(2) Calculate )0(
kc ; 37 +≤≤− nk  

(3) Calculate )( j
kc  and )( j

kd  as required; j<0, the range of k is dependent on j 

(4) Calculate )(xg j  by using these expansion coefficients. 

The characteristics of the input function )(lf  are investigated using this information. 

  
  

3.PRINCIPLE OF REACTIVITY COEFFICIENT EVALUATION 

  

As described above, arbitrary function can be decomposed to wavelet function of different levels. In 

time-frequency localization analysis, the level j, which decreases from zero, means that it changes the 

frequency of the scaling function )(xφ  by 2 j times. When the data to be analyzed have noise, the 

noise components are taken into )(xg j of low j’s such as j= -1, -2, -3, and so on. When the 

decomposition process progresses the noise components decrease and thus are eliminated. On the 

other hand data without noise can also be decomposed but the )(xg j ’s have no components of noise. 

When reactivity is proportional to the other parameter, then it is clear that the decomposed functions 

at the same level of reactivity and the parameter are also proportional to each other. As explained 

above, the quantity of information of )(xg j that can be calculated using )( j
kd  is thought to be 

identical to each other. Based on this concept we expected that the moderator temperature coefficient 

could be calculated as the ratio of the )( j
kd ’s for the reactivity and the temperature.  

  

In the numerical simulation the number of the time sequence data pair was 12827 = , which was less 

than the number of the actual reactor data acquisition. As seen in Fig.2 the wavelet function )(xψ  

has values for 70 ≤≤ x . The common )( j
kd ’s for all levels used for the calculation of )(xg j for 

1280 ≤≤ x  are eight such that from k = -7 to k = 0. At first we used all of these expansion 

coefficients for each level for the ratio calculation and then averaged the eight ratios. However the 

result was not necessarily correct. In the case that )( j
kd  was too small, the error of calculated 

moderator temperature coefficients became very big. So we took the largest six )( j
kd ’s in the absolute 

value and calculated the average of the ratios. As a result we obtained good estimation for selected 

levels. For the selection of the levels we calculated the moderator temperature coefficient in all levels. 

The standard deviation of the error of the estimated moderator temperature coefficient became small 

when decomposition level is less than -7. Based on the results we used data of two decomposition 
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levels that give smaller standard deviation for the moderator temperature coefficient estimation. It is 

found that the analysis can estimate or reproduce the given moderator temperature coefficient within 

the relative error of 4% using less length of time sequence data. 
  

As the actual data in a PWR is quite similar to the ramp case it is expected that this method can give 

suitable results. We used data of the deviation from the equilibrium state in the numerical simulation. 

However the actual data does not always contain deviation data from the equilibrium state. In such 

case the data have some bias. In order to examine the effect of the bias, several biases were added 

only to the reactivity signal in the ramp cases and calculated the moderator temperature coefficients. 

The result of the numerical simulation is shown in Fig.3.  

  

  

  

  

  

  

  

  

  

  

  

  

Fig.3 The relation of the bias and the error of calculated MTC’s 

  

From the result it is known that we must remove the bias. Firstly we assumed that the bias can be the 

first value. Secondly we assumed that the bias is given as the average of five values from the 

beginning of the data. However in any cases the biases are not estimated correctly. Therefore we used 

the average of all the data as the bias. Good results are obtained as shown in Table.1.  

  

Table.1 Bias decision method and calculated MTC’s 

  

          

  
                

  

  

  

  

4. ACTUAL PLANT DATA ANALYSIS 
  

With the actual data of temperature and reactivity for the moderator temperature coefficient in actual 

PWRs, we calculated the moderator temperature coefficient and compared with the linear fitting 

procedure for 28 cases. The number of sequential data pair with the wavelet transform was 128 and 

The first value Average of five values Average of all the data Expected 

(pcm/C) (pcm/C) (pcm/C) (pcm/C) 

-2.57 -2.53 -2.08 -2.00 

-4.26 -4.53 -4.09 -4.00 
-6.25 -6.53 -6.08 -6.00 
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that with the linear fitting procedure was about 500. The sequential data of 128 pairs are taken out 

from various points of about 500 pairs. The calculated value depended on the position of the data of 

128 pairs, however the difference is negligible small. The average of error between the linear fitting 

procedure and the wavelet transform is Ckk /)/(101.0 5 ∆× −  and the standard deviation of the error 

is Ckk /)/(102.0 5 ∆× − . The results of 28 cases are shown in Fig.4.  

  

  

  

  

  

  

  

  

  

  

  

  

  

Fig.4 Comparison of MTC’s calculated by using wavelet transform 

with those by using linear fitting procedure 

  

It shows that the wavelet transform method gives as accurate results as that of the linear fitting 

procedure with smaller number of data.  

  

  

CONCLUSIONS 
  

Based on numerical simulation it is found that the analysis can properly estimate moderator 

temperature coefficient with less length of time sequence data. Further it has been shown that the 

wavelet transform for estimation of moderator temperature coefficients in the actual PWRs is 

applicable. It is expected to reduce the required data sequences during the measurement. It helps to 

obtain data for the other reactivity coefficient of shorter time transient.  
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