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ABSTRACT 
 
 

 The random statistics analysis of resonance width distributions was performed. The 
unequal contributions of individual channels forming these widths is taken into account. The 
analytic forms of the corresponding functions for two as well as for three channels are derived. 
In general case the distribution density function is presented in the integral form. The simple 
relations for the moments of the function of density distribution in dependence of the 
contributions of various channels in the total (summary) width are found. The moments of the 
distribution function form a system of equations for the coefficients characterizing the relative 
contribution of channels in the average width and can be estimated if the values of the 
corresponding moments are known for a sufficiently large parameter set. The variant with a big 
number of channels for one part of the resonance width and one or two separate channels for the 
remainder is of interest too. This corresponds, for example, to the problem of estimation of 
(n,γf)-process contribution in the total fission width. The obtained distribution functions are used 
for a generalized statistical analysis of the fission widths of 235U resolved resonances, determined 
by the ORNL group. The preliminary results of this analysis are presented. 
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 The neutron resonances are outstanding from the scientific point of view as long living 
nuclear states, which enable the study of various processes - neutron capture, nuclear fission, 
neutron scattering, charged particle emitting nuclear reactions realized from the resonant states 
with known energy, spin and partial resonance widths - the resonance parameters. The 
significant practical meaning of the knowledge of resonance parameters stimulates further 
investigations on the resonance analysis of the neutron cross sections and the statistical 
properties of resonance parameters. The last can open a useful link from the neutron resonance 
field treated preferably as a practical area to the study of nuclear structure. The creation and 
practical application in the resonance analysis of a large set of a experimental data of the fitting 
code SAMMY1, which uses Rich-Moore formalism and the generalized least squares method, is 
a remarkable achievement. The results about 235U are very impressive revealing the resolved 
resonance structure for this nucleus in a wide energy interval2. We are presenting here the results 
of an attempt to perform the statistical analysis of the set of the obtained resonance widths. 
 
 The physical concept of compound resonances involves the hypothesis about the random 
(Gaussian) distribution of the resonance width amplitudes γλc for sufficiently large in statistical 
sense resonance level set. This hypothesis can be considered as a consequence of the statistical 
central limit theorem in application to the problem of the creation (decay) in the channel c of the 
complicate multicomponent compound states λ. The fluctuations of the resonance widths in the 

separate channels 2
ccc p λλ γ=Γ  ( )E(pc  - are the penetration factors) in the frame of this 

hypothesis must obey the 2
1χ  distribution or the distribution of Porter-Thomas3. 
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ccx γγ= λ . The data about resonance neutron widths agree rather well with this 

distribution.  
 
The extension of the hypothesis of the amplitudes random distribution on the problem of 

the fission widths fluctuation analysis, where the several )(ν  independent fission channels are 

effective, is realized by the usual 2
νχ -distribution, or the distribution of Porter-Tomas 
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For the fission over threshold the energy dependence of the penetration factor in the fission 
channels is unessential and practically we have: 
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The relative contribution of different channels here is supposed to be equal and the channel 
number can be estimated by means of the dispersion of the analyzing set of the fission widths 
(for fixed total number) 
 

ν=− /21x 2   (4) 
 
The channel number can be determined also by using the position of the distribution maximum 
(for 3≥ν )  
 

2/)2(x max −ν=  
 

The method for statistical interpretation of the observed statistical fluctuations of the 
resonance fission widths can be modified. This is actual now, when the big parameter sets 
derived from the experimental data are available - about 400 resonances for Pu239 , more than 
3000 for U235  and the total moments of these are identified. The following distribution, more 
generalized than (2) had been created for the variant with 
 

c
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cxx ∑
ν

=
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where the possibility of unequal contribution cβ  of different channels in the total width has been 
taken into account. The characteristic function (Laplace transform) of this distribution, let us 
note it as )x,,...( 1 νββ℘ , has been found in the following form4 

 

2/1

1c
ccc1

1c

px
1

0

px )p21(dx)x( edx)x,,...(e)p( cc −
ν

=

ν

=

β−
ν

∞
− ∏∏∫ β+=Ρ=ββ℘=Φ , (6) 

 
and the original in general case is the convolution of the transforms in (6) 
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The characteristic function )p(Φ  determines the moments of the distribution as the 
corresponding derivatives of (6) at p=0: 
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It can be easily seen, that in the case of equal ν=β 1c  the modified distribution coincides with 
(2).  

 
For two channels, as seen in reference 5, the inverse transform of the corresponding 

function )p(Φ  is 
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and in the limit case 12 <<β  we will have )x(P1  distribution (1), as well as at 2121 =β=β  the 
distribution )x(P2  - Figure1 
 

 
In the three channels case β=β=β 21 , β−=β 211  we obtain 
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 The variance with the predominance of 1-3 channels and a big number of weak channels, 
corresponding e.g. to the (n, γf) process is interesting too. Here the characteristic function (6) can 
be presented approximately as 
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where ε is the summary relative contribution of the weak channels in the average width, and the 
index c' is relative to the isolated “strong” ν0 channels (direct fission), so that 
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The corresponding distribution function is evidently 
 

)x,,...(
01 ε−ββ℘ ν  for ε>x  

 
 0 for ε<x  

 
 The distributions of the resonance widths, presented in the Reference 2, are shown on 
Figure 3 for the levels with the J - spin value equal to 3 and on Figure 4 for these with spin value 
equal to 4. Generally the full set of the resolved levels has been included into the consideration. 
We rejected only small number of levels - the levels with negative values of energy and the  
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Figure 3. The distribution of the spin 3 widths-fission (upper), neutron (middle) and radiation  
(lower) graph 
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Figure 4. The distribution of the spin 4 widths-fission (upper), neutron (middle) and radiation  
(lower) graph 
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levels with very big fission and neutron widths. We considered these as added for the needs of 
multilevel analysis. The channel number has been determined for each one of the width sets 
presented on the figures 3 and 4. The value of ν is close to 1 for neutron widths and for each one 
of the two fission widths corresponding to given J. The ν is close to 2 for the distribution of the 
total fission width. The ν for the distributions of the radiation capture widths is big, which is 
expected. 
 
 Some preliminary conclusions can be done considering the shape of the distributions 
shown on the Figures 3 and 4. In the frame of the random statistics these distributions are close 
to the assumption for one neutron channel and two fission channels. The widths for each of the 
two assumed channels, derived in the multilevel analysis, probably have not very clear physical 
interpretation. If we treat these as partial fission widths the distribution suggest the availability of 
more fission channels. Naturally all these interpretation is connected strongly with the problem 
of the uniqueness of the multilevel parameters and the dependence of this on the energy 6. 
 
 In the region of the unresolved levels the distribution function of the resonance 
parameters are needed for the determination of the resonance averaged cross sections and the 
cross section functionals like averaged transmission <exp(-nσ)> as well as the resonance self-
shielding factors. Here the resonance cross section structure can be unfolded only by a 
modelling, which can be done by using statistical approaches7. The corresponding fluctuation 
coefficients, however, are estimated as a rule in the approximation of SLBW (single level Breit-
Wigner). 
 
 The modified distributions of resonance parameters can be used also for the estimation of 
the resonance width fluctuations in the resonance averaged cross sections. In the traditional 
scheme of the averaging this is taken into account by the factor Fnc in the Hauser-Feshbach 
formula 
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where, as is seen in Reference 8, in the SLBW-approximation 
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 Here is considered the case of 1 neutron channel and several fission channels c(c’) in 
competition with the multichannel radiation capture ( ∑ γ++=

c
nc TTTT ). Then the average 

fission cross section summarised over all own channels can be presented as 
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where 
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This is equivalent to the result of averaging, which uses the corresponding distributions of the 
summary fission widths. 
 
 However, for the estimation of the averaged cross sections in the unresolved region it is 
more convenient to separate different reaction channels, except non fluctuating widths of the 
radiation capture (and probably this of (n, γf) process). Then in each channel we will have one-
channel distribution density. This permits to standardise the presentation of the fluctuation 
factors keeping the correctness of the mathematical scheme and without using special 
distribution functions for different reactions. The expression for the fluctuation factors are 
known for the case of one-channel scattering and multichannel radiation capture, the two-
channel problem - one neutron and one fission channel probably plus multicascade radiation 
capture (or two neutron channels)8. Two identical variants for the determination of fluctuation 
factors are possible - as a twofold integral with two-channel distribution function for the fission 
widths or separately for each one of the channels. The advantage of channel by channel 
accounting of the fluctuation factors in calculating the average cross section is in the uniform 
algorithmization of these.  
 
 The similar factor for the cross section of the radiation capture is determining as an 
integral 
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 The SLBW-approximation, used here seems to be dubious in application to the fissile 
nuclei. However the more rigorous accounting of the fluctuations in averaging the multilevel (R-
matrix) cross section formulas gives rather close values for the corresponding factors Fcn, when 
using the approximate results. 
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