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ABSTRACT 
 
New acceleration formulations, which are compatible with the adaptive differencing strategy and 
parallel environments, are required. For this purpose, we have developed the Simplified Angular 
Multigrid (SAM), Nested Iteration (NI), and V-Cycle algorithms, and their various 
combinations, and implemented them in the PENTRANTM 3-D Parallel SN code. These 
formulations have been examined for a test problem using a variety of parameters including 
different scattering ratios, coarse- and fine-grid convergence tolerances and quadrature orders. 
The effectiveness of the new multigrid formulations is compared to the standard Partial Current 
Rebalance (PCR) acceleration method. Thus far, the combinations of SAM and PCR or NI and 
PCR have proved to be very effective for a large range of c-ratios. We have achieved speedups 
as high as a factor of ~7.3 in the number of iterations, or a factor of ~4.0 in the CPU time. 
Preliminary studies indicate that other combinations such as SAM+V-cycle+PCR or NI+V-
cycle+PCR can be even more effective in certain problem conditions. 
 

1. INTRODUCTION 
 
In problems with optically thick regions and high scattering ratios (c-ratio=σs/σt), particles that 
are making a large number of scattering collisions in a single energy group contribute 
significantly to scalar flux distribution. Consequently, the convergence of the source iteration 
(SI) method can become very slow. Several techniques such as Rebalance [1], diffusion synthetic 
acceleration (DSA) [2] and multigrid (MG) [3] methods have been devised to remedy the slow 
convergence of the SI method for both shielding and criticality problems.  
 
Rebalance techniques (System Rebalance (SR) and Coarse Mesh Rebalance (CMR)) use the fact 
that the converged solution must satisfy the neutron conservation (or balance) equation. By 
imposing this balance condition on the unconverged solution over coarse regions of the problem 
domain, it is possible to obtain an iteration procedure that may result in faster convergence to the 
correct solution. Rebalance techniques are effective for deep-penetration problems, however two 
difficulties are associated with them: i) They suffer from convergence instability; ii) Selection of 



an optimum coarse-mesh in the rebalance methods is usually difficult, especially in parallel 
computing environments where spatial domain decomposition is imposed. The Partial Current 
Rebalance (PCR) [4] method reduces this instability by introducing a damping parameter.  
 
Unlike the rebalance methods, the DSA method works well in eigenvalue problems with high c-
ratios. However it is not as effective in low c-ratio shielding problems. In the DSA method, 
transport solution is used to correct terms in the diffusion equation, and the diffusion solution is 
used to obtain an improved source for the transport equation. In this method, a diffusion 
formulation consistent with the SN formulation is required. This means that if the differencing 
scheme of the transport equation is changed, a new formulation has to be derived for the 
diffusion solver. Derivation of consistent diffusion formulations becomes difficult especially in 
three-dimensional (3-D) geometries and with an adaptive differencing strategy [5].  
 
In the remaining of this paper, we present: i) a discussion on the general multigrid methods, ii) 
the new angular multigrid methods implemented in the PENTRAN code [6], iii) numerical 
tests using a 3-D benchmark problem, and v) results and analysis. 
 

2. GENERAL MULTIGRID METHODS 
 
In multigrid methods, a sequence of coarse and fine-grids is used to remove different modes of 
error from the estimate of the solution. The problem converges when the error remaining in the 
solution estimate is less than some predefined tolerance. We can express the solution (i.e. 
angular flux) and the associated error as a function of frequency rather than space or direction by 
applying the Fourier transform [7]. This representation facilitates the understanding of how the 
components of the error are removed by iterations. Assume a coarse and a fine discretization of 
the same domain as seen in Figure 1. The error modes behave differently on the two grids. The 
low-frequency error on the fine-grid becomes a high-frequency error on the coarse-grid. If we 
were to solve the transport equation on this coarser grid, then we would have a good 
approximation to the low-frequency components of fine-grid solution. If we can couple the 
coarse- and fine-grid solutions, then the convergence rate on the fine-grid will be governed only 
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Figure 1: High- and low-frequency errors on fine- and coarse-grids 



by the high-frequency errors. Since the high frequency errors are attenuated more rapidly than 
the low-frequency errors, we have effectively accelerated the overall convergence.  
 
Several different types of multigrid methods have been developed and tested in different 
disciplines. Few of the examples are V-cycle, W-cycle, Nested iteration and /-cycle. Multigrid 
methods have been applied to transport calculations by using it directly for the SN equations [3, 
8, 9] and/or for the DSA equations [10]. Many of these applications have been limited to one or 
two-dimensional problems due to large memory requirements. Recently, an angular multigrid 
formulation has been developed for highly anisotropic scattering, especially for charged-particle 
transport problems, both in 1-D and 3-D geometries [11, 12]. Our method described in this paper 
is different in the sense that it is more general and can be applied to any shielding and criticality 
calculations.  
 

3. ANGULAR MULTIGRID SCHEMES 

Simplified Angular Multigrid (SAM) 

The first angular multigrid scheme we have developed is a /-cycle, which is called the Simplified 
Angular Multigrid (SAM) scheme. In the SAM scheme, a global approximate solution (i.e., 
angular fluxes) is obtained on a coarse angular grid (e.g., S4/ P0, P1), and then this solution is 
projected onto a fine angular grid (e.g., S10/ P5) filtering out the low frequency error components. 
Effectively, the calculation on the coarse-grid provides preconditioning for the fine-grid 
iterations.  
 
Using a two-grid approach, PENTRAN first performs a group source iteration/sweep over a 
coarse angular grid denoted by Ω2h. The zeroth moment balance equation is given by: 
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where  h
Aq2  includes scattering, external and fission sources. Inner iterations on Ω2h are 

continued until convergence is achieved (Note that, convergence on the coarse-grid is less strict 
compared to fine-grid (Ωh)). Then, all the coarse angular fluxes are projected onto the fine 
angular grid: 
 

hhhh P 22~ Ψ=Ψ →           (2) 

Here, hhP →2  is the projection operator (coarse angular grid to fine angular grid). For this 
projection, we select the angular flux on a particular direction on Ω2h that is closest to a direction 
on Ωh. The angle between direction vectors of Ω2h and Ωh can be written in terms of direction 
cosines: 
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By finding the minimum of these angles hh
nm
→2

,α , we determine the closest direction. 



In case there is more than one minimum angle, the angular fluxes are determined by performing 
simple arithmetic mean of the fluxes in these directions. 
 
In order to conserve particles, we must guarantee that the integral quantities (i.e., scalar fluxes) 
rendered on both coarse and fine angular grids are equal. In order to achieve balance we 
normalize the projected angular fluxes: 
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Using the projected angular fluxes, the scattering source and the boundary angular fluxes (in case 
of spatial domain decomposition) on the fine-grid are updated. Then, the iterations/sweeps are 
continued on the fine angular grid (Ωh) until convergence is achieved. 

Nested Iteration (NI) 

A variation of the SAM scheme is the Nested Iteration, in which we use successively refined 
multiple angular grids (e.g., Ω8h, Ω6h, Ω4h, Ω2h, Ωh). We start on the coarsest angular grid (e.g. 
Ω8h) and solve for angular fluxes within certain convergence tolerance. These angular fluxes are 
then used as the initial solution for the next finer grid. This process is continued until we 
converge on the finest grid (Ωh). Note that the convergence tolerance for the coarser grids should 
not be as small as the finer grids. This issue is examined later in this paper. 
 
Both SAM and Nested have the following features: 

• Efficiency: The number of operations per mesh is significantly lower for the coarse 
angular grid compared to the fine angular grid.  

• Memory requirement: SAM and Nested Iteration are not cyclic algorithms; all angular 
flux arrays are overwritten when iterations upgrade to a finer grid. Therefore, no extra 
memory is required.   

V-Cycle 

The V-cycle algorithm uses a two-grid scheme. We, first perform an iteration on the fine angular 
grid, and compute the difference between the previous and the current iteration scattering sources 
for each cell and direction. This difference is called the residual. Residuals are then expanded 
into moments to be used as source on the coarse angular grid. We then perform a sweep on the 
coarse angular grid to render the error terms. Using the closest direction approach, these error 
terms are projected back to the fine-grid to update the angular fluxes and the scattering source. 
We, then proceed to the next iteration with the updated source. We cycle between the two grids 
until a converged solution on the fine angular grid is obtained. The following algorithm 
summarizes the angular multigrid V-Cycle: 

 



• Sweep hhh qH =Ψ  on hΩ with the initial guess hΨ  

o Compute residual h
old

hh qqr −=  

§ Sweep hhhhh qPeH 222 →= on hΩ with the initial guess 0=he  

o Update fluxes hhhhh eP 22~ →+Ψ=Ψ and scattering source hh qq ~→  

• Sweep hhh qH ~=Ψ  on hΩ with the initial guess hΨ~  

where H is the transport operator, r is the residual, e is the error, P is the projection operator. h 
and 2h represent fine- and coarse-grids respectively, and tilde represents the updated values. 

Unlike the SAM and Nested Iteration schemes, in the V-cycle scheme, the angular fluxes on the 
fine-grid are saved, since they are updated with the error terms computed on the coarse-grid. 
Saving the angular fluxes imposes extra memory requirement, which can be compensated by the 
possible increase in the rate of solution convergence. It is important to note that all the angular 
multigrid algorithms described are compatible with the parallel memory structure and the 
adaptive differencing strategy of the PENTRANTM code. 

It is also possible to combine the V-cycle with the SAM or NI schemes. SAM or NI effectively 
provides the initial solutions for the fine-grid. Figure 2 depicts the V-cycle and its combination 
with SAM or NI.  
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Figure 2: V-cycle and its combination with SAM or NI. 



 
4. FEATURES OF THE PENTRAN™ CODE SYSTEM 

PENTRAN™ is a 3-D parallel SN code with complete, automatic phase space (angle, energy and 
space) decomposition for distributed memory and computing environments. It has been 
developed in Fortran-90 using MPI (message passing interface) library [13] and has been 
implemented on different platforms such as IBM SP2, SUN multi-processors, and PC clusters. 
Unique features and algorithms of PENTRAN™ include: Complete phase space decomposition, 
parallel I/O, partitioned memory structure, adaptive differencing strategy (including Directional-
Theta-Weighted (DTW) and Exponential-Directional-Weighted (EDW) schemes), simplified 
angular and spatial multigrid acceleration schemes, and variable meshing with Taylor Projection 
Mesh Coupling (TPMC). Pre-and post-processing components included in the PENTRAN™ 
code system, such as PENMSH (automatic mesh and source generation), PENINP (automatic 
input generation), PENDATA, and PENPRL  (flux data extraction and processing) [14] greatly 
facilitate the task of generating large 3-D models. 

5. NUMERICAL TESTS 
 
In this section, we measure the performance of the angular multigrid schemes for different 
problem parameters such as c-ratio, coarse and fine angular grid quadrature orders, and 
convergence tolerances. We utilize problem 1 of the Kobayashi 3-D deterministic transport 
benchmark problems [15]. Figure 3 shows the geometry of the problem. Reflective boundary 
condition is prescribed on planes x=0, y=0 and z=0, and vacuum boundary condition is 
prescribed on all other surfaces. A volumetric unit source is located in the region bounded by 
x=0-10cm, y=0-10cm, and z=0-10cm. For this study, we have used an S20 level-symmetric 
angular quadrature set. Scattering is isotropic, and we have analyzed cases with different c-ratios 
ranging from 0.6 to 0.99. Table 1 shows the total cross sections, fine mesh thickness, and 
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Figure 3: Kobayashi 3-D benchmark problem 



differencing schemes used in different regions of the problem. Detailed studies [16] on this 
benchmark problem have demonstrated that the Directional Theta Weighted (DTW) differencing 
scheme is adequate for the source and void regions (small flux gradients), while the Exponential 
Directional Weighted (EDW) differencing scheme is adequate for the absorber regions (large 
flux gradients). 
 

Table 1: Kobayashi benchmark problem specifications 

Region σσ (cm-1) ∆∆x-∆∆y-∆∆z Differencing Scheme 
Source 1.e-01 1.0cm DTW 

Void 1.e-04 10.0cm DTW 

Absorber 1.e-01 10.0cm EDW 

 
For parallel processing of this problem, we have partitioned the angular domain into four sub-
domains (2 octants/ processor) and processed them on 4 processors of the LIONX parallel PC 
Cluster at Penn State University.  
 

6. RESULTS AND ANALYSIS 
 
Here, we investigate how convergence tolerances, c-ratio, and quadrature order on the coarse and 
fine-grids affect the performance of the SAM, NI, V-cycle and the combined algorithms. We 
also compare the effectiveness these new algorithms to that of PCR. We measure the 
performance by iteration and CPU speed-up. Note that  
 

onaccelerati  withiterations grid fine of Number
onaccelerati  withoutiterations grid fine of Number

 SpeedupIteration = , 

 
while 
 

onaccelerati  withtime CPU
onaccelerati  withouttime CPU

 SpeedupCPU = . 

 
Effect of Coarse- and Fine-grid Tolerances 
 
In this test, we have determined the effect of coarse- and fine-grid tolerances for the SAM 
scheme. For a fixed c-ratio of 0.9, S20 for fine-grid and S10 for coarse-grid, we have varied the 
coarse-grid convergence tolerance in a range of 1.e-01 to 1.e-06 and the fine-grid tolerance in the 
range of 1.e-03 to 1.e-06. In Fig. 4, we compare the iteration speed-up for the SAM scheme. For 
all fine-grid tolerances, we observe that SAM scheme becomes more effective with a tighter 
coarse-grid tolerance. However, note that for the coarse-grid tolerances below 1.e-04, no further 
speed-up is obtained. We also observe that as the tolerance becomes tighter on the fine-grid, 
SAM becomes less effective, regardless of the coarse-grid tolerance. In Fig. 5, we compare the 
CPU speed-up. We see a relation between the coarse- and fine-grid tolerances, i.e., as we reduce 
the fine-grid tolerance, coarse-grid tolerance should also be reduced. Also note that, in order to 



obtain the maximum CPU speedup, the coarse-grid tolerances should be in the range of 1.e-03 – 
1.e-04.  

Effect of c-ratio 
 
Using a fixed fine-grid convergence tolerance of 5.e-04, S20 for the fine-grid and S10 for the 
coarse-grid, we have performed tests for SAM with different c-ratios ranging from 0.6 to 0.99. 
The coarse-grid convergence tolerance is varied from 5.e-01 to 5.e-04. As seen in Fig. 6, SAM 
becomes more effective with the increasing c-ratio, resulting in a significant acceleration as high 
as ~7.8. SAM outperforms PCR by a factor of ~2.6 in iteration speed-up, however as shown in 
Fig. 7, it performs similar to PCR for CPU speed-up. 
 
Figure 8 compares the acceleration by PCR and the combination of SAM and PCR. Using PCR 
with SAM decreases the number of coarse-grid iterations, thereby increasing the overall 
efficiency of the angular scheme. This combination accelerates the calculation by a factor of ~4 
while PCR alone achieves a speedup ~2.9 for c-ratio of 0.99 and the coarse-grid tolerance of 1.e-
03. We have repeated this test using the NI scheme combined with PCR (Fig. 9). In NI, we have 
started the calculations on S4 grid, progressing to S10 and applied PCR on each grid. As seen in 
Fig. 10, we have obtained similar results as the SAM and PCR combination for large c-ratios, but 
the effectiveness decreases for small c-ratios and the small coarse-grid tolerances. Figure 10 also 
suggests that performance of NI is less sensitive to the coarse-grid tolerance. 

Effect of Coarse- and Fine-grid Quadrature Orders 
For a fixed c-ratio of 0.9 and S20 for the fine-grid, we have performed tests for the SAM scheme 
using a range of coarse-grid quadrature orders and convergence tolerances. Examining the 
iteration speed-up behavior, we observe that there is a relation between the iteration speed-up, 
coarse-grid quadrature order and tolerance. As we either increase the quadrature order or 
decrease the tolerance, we get better speedups. As seen in Fig. 10, behavior of the CPU speed-up 
is rather different. Beyond S8 and tolerances below 5.e-03, the efficiency of SAM decreases due 
to a higher computational effort on the coarse-grid.  
 
Table 2 provides information on relation between the coarse- and the fine-grid quadrature orders 
in terms of the CPU speed-up. This test has been performed for a c-ratio of 0.6, and coarse and 
fine-grid convergence tolerances of 5.e-02 and 5.e-04, respectively. Table 2 indicates that for an 
effective acceleration for problems with fine-grid quadrature orders up to S10, the coarse-grid 
quadrature order should be close to fine-grid quadrature order. Beyond S10 for the fine-grid, the 
coarse-grid quadrature orders should not be greater than S8 or S10. 

Combinations of Angular Multigrid Formulations 
 
In Table 3, we summarize various combinations of the angular multigrid formulations and the 
PCR acceleration. This test has been performed for a c-ratio of 0.6, coarse and fine-grid 
tolerances and quadrature orders of 5.e-02/5.e-04, and S10/S20, respectively. For the Nested 
Iteration (NI), we have started on S4, gradually upgrading to S10. Table 3 indicates that angular 
multigrid formulations combined with PCR become very effective. SAM combined with PCR 
reduces the CPU by a factor of ~3.43, while PCR alone reduces by a factor of ~2.38. The 



combination of V-cycle, SAM and PCR can significantly reduce number of fine-grid iterations, 
however, because of the high cost of V-cycle, is not as effective in reducing the CPU time.   

 

Table 2: Relation between coarse- and fine-grid quadrature orders for the SAM scheme a 

Fine-grid Quadrature Order Coarse-grid 
Quadrature 

Order S6 S8 S10 S12 S14 S16 S18 S20 
S4 1.12 1.11 1.13 1.19 1.21 1.17 1.22 1.21 
S6 - 1.22 1.16 1.29 1.24 1.21 1.27 1.24 
S8 - - 1.24 1.26 1.23 1.30 1.37 1.34 
S10 - - - 1.29 1.29 1.27 1.32 1.40 
S12 - - - - 1.26 1.28 1.30 1.25 
S14 - - - - - 1.24 1.30 1.28 
S16 - - - - - - 1.25 1.21 
S18 - - - - - - - 1.14 

      a c-ratio=0.9, coarse- and fine-grid convergence tolerances of 5.e-02 and 5.e-04, respectively. 
 

 

 

 

Table 3: Comparison of speedups obtained by combined formulations a 

 ITERATION 
SPEED-UP 

CPU 
SPEED-UP 

NO ACCELERATION 1.00 1.00 

PCR 2.43 2.38 

SAM 2.76 1.52 

SAM+PCR 5.41 3.24 

NI 1.83 1.37 

NI+PCR 5.62 3.39 

V-cycle 1.74 1.28 

V-cycle+PCR 4.87 3.43 

V-cycle+SAM 3.24 1.57 

V-cycle+SAM+PCR 7.30 3.39 

V-cycle+NI 2.76 1.58 

V-cycle+NI+PCR 6.95 2.45 
a c-ratio=0.6, S10 for coarse-grid (for SAM and V-cycle), S4 
to S10  for the NI coarse-grids, S20 for fine-grid, and coarse- 
and fine-grid convergence tolerances of 5.e-02 and 5.e-04, 
respectively. 



 
 

Figure 4: Iteration speedup with SAM for different coarse and fine-grid convergence tolerances a 
a c-ratio=0.9, S10 for the coarse-grid, and S20 for the fine-grid 
 

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

Coarse-Grid Tolerance

Ite
ra

tio
n 

S
pe

ed
up

1.0E-03

1.0E-04

1.0E-05

1.0E-06

Fine-Grid 
Tolerance
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SUMMARY AND CONCLUSION 
 
We have developed the Simplified Angular Multigrid (SAM), Nested Iteration (NI), and V-Cycle 
angular multigrid algorithms that are compatible with the adaptive differencing strategy and 
parallel environment of the PENTRAN  3-D Parallel SN code. These formulations have been 
examined for a test problem using a variety of parameters including scattering ratios, coarse and 
fine-grid convergence tolerances and quadrature orders. In comparison to the standard PCR 
formulation, combinations of PCR with SAM or NI have proved to be very effective for a large 
range of c-ratios. Preliminary studies indicate that other combinations with V-cycle can be 
effective even in low c-ratios. Further work is under way for testing the new angular multigrid 
formulations for criticality problems and real life problems such as the VENUS-3 benchmark 
and BWR core shroud problem. 
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