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The time-dependent second-order PN equation is discretized by a fully 

implicit finite-difference scheme; the obtained pseudo-steady-state PN equations are 
then used in the framework of the Variational Nodal Method (VNM). This scheme is 
implemented in the VARIANT/KIN3D code. A new code option is presented that 
takes in account neutron wave phenomena. The code has been validated for a very 
simple case against an analytic solution; other simple tests are performed in order to 
investigate differences compared to the original version of KIN3D/VARIANT. 
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1. Introduction 
  
Innovative nuclear waste burning concepts, such as Accelerator Driven Systems (ADSs), are under 

investigation and development worldwide and also at Forschungszentrum Karlsruhe. To prove safety of 
an ADS and to simulate experiments related to ADS studies, transient analyses are carried out [1, 2]. 
These analyses require use of modern codes based on advanced neutron transport models. In particular, 
the Variational Nodal Method (VNM) implemented in the VARIANT code [3-6] shows a great potential 
for 3-D transport calculations. Initially, VARIANT was developed for solving the steady-state neutron 
transport equation based on the nodal method applied to the second-order (even-parity) transport equation. 
Later a neutron kinetics model, KIN3D [7], was coupled with VARIANT for dealing with 
time-dependent problems. KIN3D was originally developed for critical reactor analyses, though an 
option for taking into account an external neutron source was implemented for generality. Recently 
transient simulations for an external neutron source driven system were performed with 
VARIANT/KIN3D [2]. The fast transients (in the following we consider that a transient is fast if the 
corresponding time scale is comparable to the neutron lifetime) were caused by rapid source variations. 
For this new VARIANT/KIN3D application capability related to ADS transient analyses, we have 
recently extended the KIN3D model aiming at improving the accuracy and reliability of the code. In the 
paper we present these extensions and numerical results for simplified cases that show and compare the 
performance of initially available and newly introduced computation options. 

 

2. Mathematical Formulation 
The variational nodal method is based on the search of the minimum of a functional. The 

Euler-Lagrange equation of this functional is the second-order (in space) neutron transport equation: this 
methodology was developed by E. E. Lewis et al. [3-6]. For the readers convenience we show briefly the 
path leading to the mathematical formulation of this method. 
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2.1 Second Order Transport Equation: Time Independent 

To explain the VNM, let us consider the within-group neutron transport equation: 
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                                                (1) 

( ,rϕ Ω is neutron flux, 

( ,S r Ω is sum of fission, up- and down-scattering, and external sources, 

[ ]( ,L r Ω is self scattering and absorption operator, 
group index is omitted, other notations are standard. 

By introducing even- and odd- parity (with respect to angle) flux components  
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one can get a system of coupled equations: 
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Here L+, L-, and S+, S-, are the even (+) and odd (-) parity components of L and S, which are defined 
following the approach of Eq. (2). For the P1 approximation, L+ corresponds to the removal cross section 
and L- corresponds to the transport one. By eliminating χ  from Eq. (3), one can get an equation for the 
even flux (angular and spatial variables are omitted): 
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The main advantages of solving Eq. (4) instead of Eq. (1) by the PN (spherical harmonics) method 
are the following ones: (a) the number or unknowns is reduced (as the even-parity flux is expanded 
within spatial meshes with the even harmonics only) and (b) Eq. (4) is self-adjoint. Due to the latter 
feature, one can construct a positively defined functional, the minimum of which corresponds to the 
solution of Eq. (4). The corresponding “Variational” problem can be solved numerically by the Ritz 
method. 

2.2 KIN3D Model: Original Approach 
In the following only the direct option (a fully implicit scheme with respect to time) of KIN3D is 

considered. The delayed neutrons are ignored (as their treatment was not changed) for brevity. The 
time-dependent within-group transport equation in the even-parity form can be written as (the 
fluxes/operators are time-dependent): 
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For a time interval i, , the implicit scheme gives: ( 1i i it t t −∆ = − )
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This finite-difference representation transforms the original Eq. (5) into a set of steady-state-like 
problems of the Eq. (3) type. According to the original KIN3D approach, the term  
in the last equation is neglected giving rise to an approximate treatment of the time dependence. This 

( ) (1
1i i iv t χ χ−

−∆ − )



 

approximation is usually quite accurate for reactor perturbations caused by relatively slow variations (in 
time) of cross-sections (e.g. due to material density or temperature variations) and of the external source. 
For the lowest angular order (the even- and odd-parity flux components are the scalar flux and current), 
this treatment corresponds to the time-dependent diffusion equation (i.e. Fick’s law is assumed being 
valid under transient conditions and, in particular, the time derivative of the current is neglected). 

2.3 KIN3D Model: New Option 
In case of fast source variations, the approximate treatment discussed above may no longer be 

sufficiently accurate. A new KIN3D option does take into account the term related to the time derivative 
of the odd-parity flux as described in the following. One may note that the factor can be seen as 
an additional absorption cross-section (time absorption), while 
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known and can be added (as a “time source”) to the source terms. By assigning 
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one can transform Eq. (6) into (index i is omitted hereafter): 
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then the even-parity equation can be derived: 
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By introducing a group index g (and rearranging) one gets: 
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and 'g g
−

→Σ  is the odd part of the group-to-group transfer operator. The complexity of the procedure is 
related to a specific feature of the VARIANT solution scheme: only even-parity external source moments 
are allowed, therefore the contribution related to the term (a) in Eq. (10), has to be computed outside of 
VARIANT and added to the even-parity source.  

We have shown that the time-dependent equation can be transformed into a set of steady-state like 
problems (Eq. (10)), which are similar to the original problem (Eq. (4)). The corresponding 
cross-section and external source files are generated by KIN3D at each time step and supplied to 
VARIANT. The cross-sections include the “time absorption”. The external source (even-parity moments 
only) includes “additional” components: the two last right-hand part terms of Eq. (10). 

Compared to the original approach ( TS −  was set to zero and L−  was used instead of  in Eq.(9)), 
the new KIN3D option computes in addition the following (at each time step): 

L−

• it reconstructs the odd-parity flux from the even-parity flux computed by VARIANT (by solving the 
second equation of the system (8), iteration are needed in case of up-scattering); 

• it solves Eq. (11)) (iterations are needed in case of up-scattering) and adds the corresponding term to 
the external source file; 

• it modifies the odd part of the scattering/absorption operator (to obtain L−  instead of ). L−

For the lowest angular order (P1), one may transform Eq. (5): ψ φ→  (scalar flux), Jχ →  (current), 
 (isotropic source), (removal cross section), (transport cross section, i. e. the S + → Q rL+ → Σ tr

− → ΣL



 

total cross-section minus the anisotropic self-scattering one). If the source is isotropic, (we consider the 
1-group equation here): 
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Eliminating the current yields the telegraph equation: 
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For the lowest angular order, Eq. (10) corresponds to the discretized (in time) Eq. (14). Compared to 
the conventional time-dependent diffusion equation, 
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the P1/telegraph equation includes additional terms (in brackets in Eq. (14)). These terms give rise to 
neutron transport wave phenomena. 

2.4 Angular and Space Discretization 
According to the angular and space discretization used in VARIANT, we introduce a complete set of 

ortho-normal functions in space ( )lf r and in angle ( )m
g ±

± Ω  that yields the following expansion: 
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where 
,l m

ξ ± are the of even- and odd-parity flux moments. 
By expanding (employing the same set of basis functions) the source and scattering kernel (see the 

second equation of Eq. (8)) it is possible to get the following explicit expression for the odd-parity flux 
moments (odd flux moments at previous time step being assumed known): 
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where: 
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g totΣ  is total cross section for group g, 
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In order to take into account the additional time absorption, we have introduced: 
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Eq. (11) then could be transformed: 
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At this point it is possible to take in account the contributions to the source even-parity moments 
arising from terms (a) in Eq. (10) by adding to the external source terms: g l ,m+S  



 

( ) ( ) ( ) ( ) ( ){',
',

'
,

.
g T l m

g l ll m m mii
l m g tot g s m

S
dV d f f g g

−

+ − +
−

−

−

− +
−

= × Ω Ω∇ Ω
Σ − Σ

∑∑ ∫ ∫ }Ω�S                      (20) 

3.  Results 
This chapter consists of two parts. In the first one we consider a benchmark case, for which an analytic 

solution can be obtained [8, 9], in order to test the new KIN3D option. In the second part, a comparison 
between the new and old KIN3D options is performed for a simplified reactor model related to an 
experiment [2] in order to get an impression: how the options affect a practical case. 

3.1 Analytical Benchmark 
We consider a thick non-fissile 1-D slab. All neutrons have the same velocity: . The total 
and scattering cross-sections are: 

810 /v cm= s
10.8tot cm−Σ = , 10.4s cm−Σ = ; the neutron scattering is isotropic. The 

source variation is triangular in time: the source is zero t=0, reaches the maximum of 1000cm 1 1s− −  at 
t= 90.5 10 s−⋅  and goes down to zero at 910 s−

( ),Q x t

. The source is isotropic, flat (in space) within a “source 
region”, being zero outside this region. Two options are considered in the following: a “narrow” source 
region (the boundaries are at 0.001 cm) and a “broad” source region (the boundaries are at 0.1 cm). 
The geometry model, physical properties  (i. e. cross sections, neutron velocity, etc.), and source 
variation for this test case were chosen in order to have a strong difference between the diffusion and P1 
options (we use “P1” instead of “P1/telegraph” hereafter). For this model we obtained a reference 
(assuming the P1 equation being valid) solution (time-dependent neutron flux) as described in the 
following. One may get the time-dependent flux for a source pulse that is proportional to the Dirac delta 
function in space (x) and time (t), 
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=  ( ) ( )xδ δQ t  by the Laplace transformation in time and the 
Fourier transformation in space [8,9]: 
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modified Bessel function of the 1st order. This solution is valid for a thick slab until the wave reaches the 
boundary. By employing this result as Green’s function, we got (employing some analytics and numerical 
integration) the reference solution. The reference solution shows a wave front that travels at the velocity 
of / 3v  away from the source. Wave phenomena are neglected in the diffusion approximation because 
the current varies promptly when the scalar flux changes (a time-space localized perturbation in the 
source term is seen in the whole domain instantaneously [10]). For the same model we computed the 
time-dependent flux by employing the original diffusion and new P1 options of KIN3D (the spatial mesh 

x∆  of 0.001 cm, 4th order spatial expansion within nodes, surface 2nd order spatial expansion for the 
node interfaces being used). The corresponding results for the narrow and broad source regions are 
shown in Figures 1 and 2, two different time step being employed in KIN3D: fine (0.001 ns) and coarse 
(0.1 ns). In the wave front area, the numerical solution converges to the reference one with time step 
decreasing. The flux amplitude in the region between the source position and the wave front is not 
appreciable in Figure 1 since it is about 100 times smaller than the maximum flux value. However, the 
convergence (with time step decreasing) of P1 results to the analytic ones is faster in this region than near 
the wave front. If the source region is larger (0.1 cm instead of 0.001 cm), the numeric solution is more 
accurate for same time step due to a lower mutual influence of approximation errors at the front and back 
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Fig. 1  Flux: numerical and analytic solution, source boundary at 0.001 cm, the following 
notations being used: 
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Fig. 2  Flux: numerical and analytic solution, source boundary at 0.1 cm 

 

3.2 Simplified case related to the MUSE experiment 
We consider a 1-D model that is related to the MUSE experiment [2]. Though the geometry model is 

simplified significantly, we suppose that it is representative for estimating possible deviations between the 
original and new KIN3D options for this case. The 1-D model is shown in Figure 3, positions of 2 
detectors (in the core and in the reflector, the detector cross-section is the U-235 fission cross-section) 
being indicated. The keff value for this configuration is about 0.975. The number of energy groups is 33. 
We consider relative detector rate variations to an almost square (in time) source pulse of 1 µs. The 
corresponding results - relative detector rate variations - are given in Figures 4 and 5. These variations are 
proportional to the pulse amplitude. Therefore the curves are similar for any source amplitude (as relative 
units are employed). As expected, the results don’t show substantial changes in the detector response to 
an external source pulse. On the other hand, the effect of employing the P1 option is not negligible: it may 



 

shift the results by several percents. The option implies higher neutron flux inertia as one may observe in 
the Figures 4, 5. It should be noted that both options correspond to the lowest angular approximation. 
Therefore the both options can not be considered as a reference for the moment. More refined modeling 
by employing higher order PN and SPN options is planned. 
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4. Conclusion 
The time-dependent second-order PN equation (even-parity transport equation) can be discretized in 

time by a fully implicit finite-difference scheme that results in a set of pseudo steady-state PN equations 
solved at each time step by the Variational Nodal Method. For this procedure we consider employment of 
two techniques corresponding - for the lowest angular approximation - to (1) the transient diffusion and 
(2) to the P1/telegraph equation.  

The first scheme was implemented originally in the VARIANT/KIN3D code; the second one was 
implemented there recently. In the paper, the second scheme is presented and validated in P1 for a 
benchmark case by comparing with a result based on the analytical technique. In addition, a simplified 
experimental model is analyzed in order to get an impression: how the results (detector response to an 
external source pulse) obtained by following the new technique may differ from those obtained by the 
original KIN3D version earlier. As expected, the results don’t show substantial changes. On the other 
hand, the effect of employing the new option is not negligible: it may shift the detector rate traces by 
several percents. 

Further investigations are planned in order to study the stability of the method and performance of the 
new option for higher angular approximations (P3, P5, etc.), 2-D and 3-D geometry models.  

The presented technique seems to be promising due to its stability proved in the simple test case. The 
correctness was proved with analytical solutions. Compared to the original approach, the increase of the 
computer time is not too high. An additional effort for implementing the SPN (simplified PN) 
approximation is foreseen. That would hopefully results in a fast multi-dimensional transport code 
applicable for a large variety of time-dependent problems. 
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