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This paper presents the theory and methods to apply variance reduction
techniques in the Monte-Carlo simulation of neutron noise experiments.
Conventional Monte-Carlo variance reduction techniques are not applicable,
because the behavior of the neutron noise depends on the collective effects
of particles, and furthermore is influenced by the higher-moments of the
tally distribution, which are not preserved by these methods.

The application of variance reduction methods results in weighted counts
and undesired correlations from the splitted particles. A theory is developed
and a correction is derived for the bias caused by the introduction of particle
weights. The history splitting method is proposed to destroy the undesired
correlations caused by particle splitting. The new method makes possible the
application of a variety of variance reduction techniques, except for Russian
roulette, which must be replaced by alternative history control methods.

The described techniques were implemented in MCNP4C and the results
of preliminary calculations and comparison with analogue calculations are
shown to prove the feasibility of the proposed method.
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1. Introduction

At present accelerator driven systems (ADS) are being studied, because of the attractive
features with regard to safety and transmutation. A crucial point for the practical realization of
ADS is the development of a reliable method to monitor the reactivity of the core. Among
others, neutron noise methods such as Feynman-α and Rossi-α measurements are being
proposed for this, and experiments like the MUSE project are being conducted to investigate
how these techniques can be applied to ADS. Furthermore, new theories are being developed
to describe these methods in a more sophisticated way with special attention to spatial,
spectral and temporal effects. The development of computer codes that can assist in the
design and analysis of neutron noise experiments systems has outstanding importance.

Conventional Monte-Carlo codes applying variance reduction techniques are not
applicable, because the behavior of the neutron noise depends on the collective effects of
particles, which can be only estimated by so-called non-Boltzmann tallies [1], and
furthermore is influenced by the higher-moments of the tally distribution, which are not
preserved by these codes. Therefore, modified versions of existing well-known Monte Carlo
codes have appeared like KENO-NR [2], MCNP-DSP [3] and MVP [4]. In these codes, the
real distribution of fission neutrons is sampled as well as the direction of fission neutrons



relative to the incident neutron [5]. Furthermore, the simulation of detection events is done in
a fully analogue way: one count is generated for each detector event (capture, fission,
scattering, etc.). The counts detected during a predefined period (block) are collected into
time bins and processed by the built-in digital signal processing (DSP) routines. The output of
this calculation is the result of the simulated experiment. As a result of the analogue
algorithm, the above-mentioned codes need long CPU times to arrive at acceptable statistics.
This causes serious problems if one has to model a large and complicated geometry or if the
detector efficiency is very low, which is usually the case in fast reactors.

This paper presents the theory and the methods to apply variance reduction techniques in
the Monte-Carlo simulation of neutron noise experiments in a way that circumvents the above
problems.

2. Theory and methods to apply variance reduction methods

2.1 Introduction of the particle weight
The weight of a particle, which is proportional to the probability of the given particle track,

is a basic principle for Monte Carlo variance reduction techniques. With the introduction of
weight the analogue simulation of detection events is not feasible anymore: instead of having
a few integer counts, one gets many fractional detector contributions. The expected value of
the sum of all weighted counts (W) equals the expected value of the number of counts (N) as
the introduction of the weight preserves the mean value, but reduces considerably the
variance.
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As noise analysis techniques are usually governed by the higher moments, corrections are
needed. In the following paragraphs the required corrections for the Feynman-α and the
autocorrelation method are derived.

2.1.1 Feynman variance-to-mean method
The Feynman-α method needs special attention, because it uses the variance of the

measured data. The variance to mean ratio is described by [6]:
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where Dν is the Diven-factor, ρp is the prompt reactivity and α is the prompt neutron decay
constant. Y usually denotes the correlated part, which measures the deviation from the Poisson
distribution, while Y∞ is its asymptotic value. Let λ be the expected value of the number of
counts in a detector with volume V and reaction cross-section during a time interval T:
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As it was shown in an earlier paper [7] the correlated part of the variance to mean ratio
equals to the variance to mean ratio of λ, which is related to the stochastic nature of the
neutron transport.
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It was shown as well, that the introduction of the weighted counts to the detection effects



the uncorrelated part only.
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 From (4) and (5) the following correction formula can be obtained for the introduced
negative offset[7]:
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where m is the mean value while σ2 is the variance of the weight of a single count. Usually,
these two parameters can be estimated very accurately, because there are many more
fractional counts than real counts. Assuming real counts with a weight of one, the variance of
the weights becomes σ2=0, while the mean is m=1, and (6) becomes zero.

2.1.2 Autocorrelation function
The autocorrelation can be written as:
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where N1 means the number of counts in a time interval [t,t+∆t] and N2 means the number of
counts in a time interval [t+τ,t+τ+∆t]. As the denominator equals the second moment, which
is not preserved, a correction is needed[7]:
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The obtained formula can be calculated as simple as (6). Furthermore holds that the correction
becomes zero in the case of real counts.

2.2 Particle splitting methods

2.2.1 History splitting
To cope with the problem of detectors located far away, variance reduction techniques like

particle splitting are used in Monte Carlo transport calculations. The basic idea is to increase
the neutron population in the region of interest (close to the detectors) by splitting the particle
and to reduce the weight of each particle such that the sum of all weights is preserved [8].
Unfortunately, this method cannot be applied to the simulation of neutron noise experiments,
because of the extra correlation between the particles originating from the splitting process.
With the application of the history splitting method proposed, this undesired correlation can
be avoided. This method explained in the following paragraphs is very similar to the so-called
deconvolution approach developed by Booth [1] for non-Boltzmann tallies and especially for
pulse height tallies.
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Figure 1 Basics of the history splitting method



History splitting implies that upon a particle splitting the whole history is split and each
originating particle is assigned to a separate history. In this way one source event generates
multiple histories with reduced weight. Then these histories are subsequently treated as
independent ones with different source times to avoid the extra correlation between the
particles but to preserve the real correlation.

Figure 1 shows a simple Monte Carlo neutron history tree to demonstrate the basic
principals of the method. In the original history on the left-hand side the physical
multiplications (fissions) in the history are indicated with green dots, while the red ones are
the variance reduction nodes. Tracks bordered by these nodes are the physical branches (see
Fig. 2). The original history should be split in such a way that in the new sub-histories
(examples on the RHS of Fig. 1) only one possible branch (track) is followed at every
variance reduction node because these subhistories are supposed to represent real physical
neutron chains. While in the Monte Carlo transport history the weight of the tracks changes at
every splitting, one single weight is assigned to each subhistory from the source to the
termination. The sum of the weights of the subhistories gives the weight of the original source
particle. After the termination of each history the subhistories should be generated. To do this,
data should be recorded from each variance reduction node during the conventional Monte
Carlo transport calculation. These data are the parent-branch, the daughter-branches and their
weights. The weight of a branch is defined as the weight reduction suffered by the track at the
given node. This way the weight (Wi) of a given subhistory (Si) is the product of the weights
(wi) of all its branches (bi):
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The number of the subhistories can be easily determined in a recursive way: the
possibilities from one node can be calculated by summing up the possibilities from its
daughter-branches while the possibilities from a branch are obtained from the product of the
possibilities from its daughter-nodes. This warns for the careful use of variance reduction
because the number of generated subhistories increases geometrically. The above described
method was realized for several variance reduction methods.

2.2.2 Replacement of Russian roulette
Russian roulette (RR) is a basic method to control the spread and the weights in a history.

Under certain conditions (e.g.: weight below cutoff) a track is removed (w=0) with a
probability of p or it survives with an increased weight (w'=w/p)[8]. In the case of the above
described approach the RR game is played on every subhistory to which the given branch
belongs. This means that several Russian roulette games can be played on a subhistory and
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Figure 2 The physical branches (bi) in a history



each of them can kill it. This results in a very low survival probability (pn, where n is the
number of Russian roulette games) and high survival weight. The resulting badly sampled
high importance contributions can destroy the advantages gained from the application of
variance reduction. Because of this problem the Russian roulette was avoided and other
methods were used to control the histories. After certain limits were reached (e.g.: number of
subhistories) the variance reduction techniques are switched off, and the history will soon
terminate due to absorption. This method is far not so effective as the RR but much better
suited to the history splitting method.

2.2.3 Implicit capture
In the case of the implicit capture at every collision the particle is split into an absorbed

(w=σa/σt) and an unabsorbed (w=1-σa/σt) part[8]. Only the unabsorbed track is followed
further. As the weight decreases continuously normally weight cutoff with Russian roulette is
needed. When weigth drops below the cutoff, implicit capture is switched off. In order to
control the number of subhistories the same happens when the number of implicit captures
exceeds a certain limit.

2.2.4 Geometrical splitting
Geometrical splitting means that a particle is split into n pieces when it enters a region with

n times higher importance[8]. The weight is set to w’=w/n. In the reverse direction RR should
be played with probability 1/n but this was turned off. To prevent successive particle
splittings on the same surface geometrical splitting is made only when the particle enters a
region for the first time. Again this reduces the effectiveness of the method but circumvents
the problems caused by RR.

2.2.5 Detection
The most important part of the simulation is the detection. The aim is to split every particle

entering the detector into a detected and an undetected part which is done by the mechanism
of implicit capture along the flight path[9]. When the particle travels through the detector, the
distance to the next scattering (di at energy Ei) is sampled instead of the distance to the next
collision. In this manner the absorption is ruled out and is implicitly included along the whole
flight path. Assuming that the detection cross-section (Σd) is part of the absorption one (Σa),
the particle can be split into an absorbed, a detected and an undetected part in the following
way:
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where N is the number of straight flight paths in the detector. For the control of the number of
originating subhistories this game is played on a track only when it passes through the
detector for the first time. If the undetected part returns to the detector it is treated
analogously.

2.2.6 Effect of the weighted source events
Although the history splitting method destroys the undesired correlations (which is enough



to preserve the prompt decay constant of the system) it introduces an other bias by reducing
the variance of the source events. In the analogue case there are only source events with
weight 1, which have a Poisson distribution in a given time interval. As the expected number
of counts (λ, see (3)) can be interpreted as a sum of the contributions from the histories it is
obvious that the distribution of the source events influences the higher moments of λ. This
results in a bias in the correlated part of (5). Unfortunately, a correction cannot so easily be
derived as for the uncorrelated part, because the weight of a subhistory is correlated with the
number of detector contributions in it. (The more detector contribution a subhistory has; the
lower is its weight because of more variance reduction games suffered.) This is why this bias
is not corrected in the following preliminary calculations. Further analyses of the problem are
in hand.

3. Preliminary calculations

3.1 Implementation in MCNP4C and calculations
The above described methods were implemented in MCNP4C[10]. Subroutines were added

to collect the required data from variance reduction nodes (CREATENODE,
CREATEBRANCH), and a function calculates the number of subhistories
(GETSUBTREES). A special subroutine (SUBHISTORY) is called when a history is
finished. It generates the subhistories by calling recursive subroutines (MAPNODE,
MAPBRANCH) and writes into a file the weight of each subhistory, the detector
contributions occurred in it together with their travelling time from the source to the detector.
This file is processed by another code, which samples a source time for each subhistory, sorts
by time and writes the time and weight of the counts into a “measurement” file. These data
can then be analyzed by any kind of noise analysis technique similarly to a measured data file
except for the required corrections because of the weighted counts (see (6) and (8))[7].

Furthermore, the required modifications to the physical model of neutrons were transferred
from MCNP-DSP to MCNP4C without interfering with the original calculation flow. These
modifications include the usage of the actual fission neutron distribution and the sampling of
the direction of the fission neutrons relative to the incident neutron[3,5]. A new source option
was created for spontaneous fission where multiple neutrons start at the same source
position[7].

a) b)
Figure 3a-b The MCNP model of the investigated fast (a) and thermal (b) system



The above calculational system was applied for two simple problems: a thermal and a fast
one (see Fig. 3a-b). The very simple geometry has been chosen so that even the analogous
method can produce results with good statistics in a reasonable time.

3.2 Fast system
The examined problem was a Pu sphere 6 cm in radius (see Fig. 3a). The sphere was deeply

sub-critical (keff=0.91030±0.00079) and the system was driven by spontaneous fission
neutrons from 240Pu and 242Pu. Two lithium glass (5.08 cm in diameter, 2.54 cm long)
detectors are located adjacent to the sphere and are positioned 180º apart.

Because of the vacuum around the detectors geometry splitting made no sense. Implicit
capture (max. 3 times subsequently on a track) and implicit capture along the flight path for
the detection was used. The simulation was switched to fully analogue mode when the
number of subhistories in a history exceeded 5000.

3.3 Thermal system
The Pu sphere was placed in light-water and the radius was decreased to 5 cm to keep it

subcritical (keff=0.95329±0.00118). The detectors were placed closer to the sphere to increase
the efficiency.

This geometry was perfect to test the geometrical splitting method as the neutrons travel
through the moderator. For this purpose three splitting surfaces were created around each
detector (see Fig. 3b). The importance increases towards the detector 1.5 times on each
surface, which results in a splitting to two with 50% probability. The implicit capture was
switched off because it is not effective enough in this problem while the detection was made
the same way as above. The cutoff in the number of subhistories was set to 1000 per history.

4. Results of the preliminary calculations

The results obtained from the above described preliminary calculations were analyzed with
the Feynman variance-to-mean method. The basic data about the runs are summarized in
Table 1. It can be observed that in the case of the fast system the save in CPU time is about a
factor of twenty, while in the more time consuming thermal case it is about a factor of ten.

Table 1 Number of started histories and required CPU time for the calculations

Type of calculation fast system thermal system

40,000,000 2,000,000analogue 188.69 min 415.05 min
1,000,000 100,000variance reduction 11.5 min 30.82 min

Some characteristic results and fitted curves are shown in Figure 4. The fitted parameters
(see (2)) are shown in Table 2 as well. The figure shows that all results have good enough
statistics for the comparison (in the variance reduction cases they are even slightly better
despite the much shorter CPU time). The correction for the offset in the case of weighted
counts (see (6)) was precise. The fitted alpha values are close in the analogue and variance
reduction cases, but the discrepancies are higher than expected: ~25% for the fast and ~10%
for the thermal system, which is much higher than the standard deviation of the fitted
parameters. The investigation of these discrepancies needs further work. As it was expected



the history splitting method biases the asymptotic value (Y∞) in a high extent (see section
2.2.6).

Table 2 Fitted α (above) and Y∞ (below) values for the different results

Type of calculation fast system thermal system

3.26·107 s-1 3409 s-1
analogue 1.42·10-2 4.33

2.43·107 s-1 3796 s-1
variance reduction 1.39·10-9 5.94·10-2
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Figure 4a-d Results for the fast (left) and the thermal (right) system with analogue (top)

method and with variance reduction (bottom)



5. Conclusions

To speed up the simulation of neutron noise experiments, theory and methods were
developed to make possible the application of variance reduction methods. It was shown that
the introduction of the particle weight influences the uncorrelated part only, which can be
corrected.

The application of particle splitting is possible with the help of the history splitting
technique. The proposed method destroys the undesired correlations and preserves the prompt
neutron decay constant of the system. However, the weighting of the source events introduces
a bias to the asymptotic value of the correlated part. Correction for this distortion has not been
developed yet. A variety of Monte Carlo variance reduction techniques were realized with the
history splitting method. As the Russian roulette game was proved to be incompatible with
this approach, it was replaced with alternative history control methods.

The history splitting method was implemented in MCNP4C and preliminary calculations
were carried out for simple systems to prove its feasibility and to compare it with analogue
calculations. The results show that the new method speeds up the calculations to a high
extent. However it needs further development and investigations because some discrepancies
were found compared to the analogue results.
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