
New Algorithms for 3D Characteristics Solvers

R. ROY∗

École Polytechnique de Montréal
P.O.Box 6079, Station CV, Montréal, Québec, Canada H3C 3A7

Abstract

Due to the constant increase in high performance computing resources, the
Method of Characteristics (MoC) utilization can now be extended to solve
large-scale deterministic problems. In MoC applications, it is possible to bene-
fit from the so-called nested parallelism, where a distributed-memory machine
(called a cluster) has embedded SMP nodes. Inside each SMP node, a shared-
memory programming model is applied. Between nodes or at the cluster level,
the message passing is used. In this paper, we focus on new developments that
enable nuclear engineers and analysts to obtain accurate 3D large-scale trans-
port calculations using MoC solvers. Some performance results are also given
for numerical simulations on hybrid machines.

1. Introduction
This paper will focus on new algorithms that are currently developed for solving 3D trans-

port problems. The method of characteristics (MoC) solves the differential form of the trans-
port equation by following the characteristics (tracking lines) which follow particle paths. [1]
The scalar flux is built by collecting all mean angular fluxes obtained in terms of the enter-
ing angular fluxes and the sources inside the domain. A sequential 3D characteristics solver
was developped to solve transport problems specific to CANDU reactors. [2] In the last years,
several extensions were done on this MoC solver regarding boundary conditions, anisotropic
scattering and sources, and the use of various acceleration techniques. These developments lead
to a generic sequential module now integrated into the recent version of DRAGON under the
name MCU: for “Méthode des Caractéristiques Universelle,” meaning for Universal MoC. [3]

In this presentation, I will review some consistent and scalable algorithms for the MoC solver
to accomodate greater computational power (new architectures, more processors. . .). Parallel
algorithms are often a blend of task scheduling in time with proper data distribution in space.
Linear MoC solvers have an appropriate granularity for large-scale parallelism: in fact, the
local angular flux along each characteristics can be computed without any knowledge of what
is outside its path except the nuclear properties and sources that are crossed. This last feature
makes a generic parallel MoC solver easy to model and to scale. The outline of the paper is
the following. Section 2 is devoted to the basic equations governing MoC solvers. Section 3
gives some acceleration techniques that are used in MCU. Section 4 describes some features of
nowadays high-performance computing (HPC) ressources. In Section 5, I introduce the generic
parallel MoC solver and some results are shown for hybrid machines. Conclusions are drawn
in the last section.

∗E-mail: robert.roy@polymtl.ca

Organized and hosted by the Canadian Nuclear Society. Vancouver, BC, Canada. 2006 September 10-14

A082 1/9

PHYSOR-2006, ANS Topical Meeting on Reactor Physics

mailto:robert.roy@polymtl.ca

2. MoC basic equations
In this section, I will review the basic equations used in MoC solvers. Among deterministic

solvers, MoC solvers are now commonly used because of the simplicity of their programming
and their capacity to be used for any geometry.

2.1 The characteristics formulation of the transport equation
First, the angular domain is covered by choosing a quadrature set of solid angles (Ω̂i, ωi). For
any direction i, a whole set of tracks ~Ti,n is generated. When traveling across different regions,
the particle beam following the characteristics crosses segments identified by their lengths Lk
and the region numbers Nk. Assume that segment k crosses region j, the relationship between
the incoming and outgoing angular flux is given by

outφgj(k) = inφgj(k) +

[
Qg
j

Σg
j

− inφgj(k)

]
{1− e−ΣgjLk}, (1)

and the average scalar flux in region j can be calculated using

Φg
j =

Qg
j

Σg
j

+
1

Σg
jVj

∑

i

ωi
∑

n

πi,n
∑

k

δjNk∆
g
i,n,k; (2)

where ∆g
i,n,k = inφgj(k) − outφgj(k) is the flux difference on segment k and πi,n is the weight

associated with track ~Ti,n.

2.2 Link with the collision probability formulation
The first-flight collision probability (CP) formulation of the transport equation uses the same
tracking lines. In the CP method, a linear system whose unknowns are the average flux val-
ues of each region (and the currents at the external boundary) is built using the exponential
attenuation factors. Unfortunately, the group-dependent CP matrices are dense, and there is
no easy way to scale the CP formulation for large problems. [2] have shown that both MOC
and CP formulations are equivalent and lead to similar numerical results. The main reason that
explains why CP solvers are no longer used in industry is that these solvers cannot scale to
large problems; however, the CP solvers are still used for small cell transport problems.

3. Acceleration techniques for MOC solvers
To increase the performance of MOC solvers, a track merging technique can be used to reduce

the number of characteristics. The use of exponential tables in Eq. 1 can also help. Acceleration
of the scattering and fission iterations is another goal.

3.1 SCR preconditioning
This technique was developed in order to rebalance the energy distribution of the scalar flux
for each region separately. AssumingG groups, the source is composed of a fission source S gf,j
and a scattering term. The source term after the n-th inner iteration is:

Qg,n
j =

G∑

g′=1

Σg←g′
s,j Φg′,n

j + Sgf,j. (3)

The local effect of the segment source is driven by the self-collision probabilities in

Φg
j = Φg

in,j + p̃gjjQ
g
j (4)

PHYSOR-2006, ANS Topical Meeting on Reactor Physics

A082 2/9

where Φg
in,j is the flux component generated without taking into account the local sources.

After substituting Eq. (3) in Eq. (4), we obtain the local rebalancing system for the region Vj:

G∑

g′=1

(
δgg′ − p̃gjjΣg←g′

s,j

)
Φg′,n+1
j = Φ

g,n+ 1
2

in,j + p̃gjjS
g
fj (5)

The above SCR system is solved by an iterative method for all the regions one after another.
Finally, the outward currents are updated using the updated source taking into account current
components. The SCR technique can be easily implemented and needs only one more diagonal
matrix to be saved. [2]

3.2 Combining GMRES with SCR
The Generalized Minimal RESidual (GMRES) method, using a Krylov subspace projection,

is adapted and implemented to accelerate a 3D iterative transport solver based on the character-
istics method. Another acceleration technique called the Self-Collision Rebalancing technique
(SCR) can also be used to accelerate the solution or as a left preconditioner for GMRES . The
GMRES method is usually used to solve a linear algebraic system (Ax = b). It uses K(r(o), A)
as projection subspace and AK(r(o), A) for the orthogonalization of the residual.

To implement the GMRES iterative method, the characteristics equations are derived in linear
algebra formalism by using the equivalence between the characteristics and the collision proba-
bility formulation as explained earlier to end up with a linear algebraic system involving fluxes
and currents. Numerical results show good performance of the GMRES technique especially for
the cases presenting large material heterogeneity with a scattering ratio close to 1 (see Table 1).
By using the SCR as preconditioner, the number of these iterations is reduced. SCR does not
reach convergence for the two last tests when c is close to 1. More details are available in [5].

Table 1: Number of iterations for different scattering ratio

Method GMRES GMRES + SCR SCR
c = 0.9 17 15 63
c = 0.999 28 19 -
c = 0.99999 55 19 -

4. New features of HPC architectures
In order to obtain scalable solvers, computer resources must be expanded at different levels.

Computer hardware and architecture can now support an increase in the number of processors,
as well as improvements in their communication systems. In this section, I will review the main
features of the modern high-performance computing ressources.

4.1 Going from 32-bit to 64-bit architectures
New computer architectures, especially the ones needed for extensive floating point operations,
are 64-bit. High performance computer nodes adresses more memory and can be used with
increased accuracy. In order to port the 32-bit version of DRAGON to 64-bit, the following
steps were needed:

PHYSOR-2006, ANS Topical Meeting on Reactor Physics

A082 3/9

• increase the word representation for integers and reals to 8 bytes;

• allow large file system (LFS) support for files over 2Gb;

• modify the record length definition when opening some files;

• change the allocation routine to double size the dynamic arrays.

4.2 Shared memory computers
In the shared-memory programming model, many tasks can run in parallel on nodes. The per-
formance of the this model is limited essentially by synchronization issues between the tasks.
In the context of characteristics transport solvers, thread-level parallelism is easy to implement
for the energy groups: the characteristics, available in the shared memory, are pushed into each
processor as its cache already contains some cross-section data. To scale well, this energy
group sharing process must be load balanced between nodes.

4.3 Distributed computers
In the message-passing programming model, several processors also run in parallel, but they
communicate with each other. In this context, we generally use a distributed tracking file. [4]
Newer parallel algorithms have also been tried: a database containing the characteristics, the
characteristics are recomputed on-the-fly at each iteration.

4.4 High-performance networks
The cost of network material has drastically decreased over the last years. Nowadays, most

clusters can use high-performance switched network such as:

• Gigabit Ethernet,

• Myrinet Fiber, or

• others (QsNet, SCI, VIA,. . .).

The bandwidth obtained by these modern networks helps to decrease the per-word communi-
cation time, allowing for faster parallel algorithms. However, latencies (of the order of µs) are
still high for applications with sustained repetitive communications.

5. Parallel algorithms for MoC solvers
Although MoC seems simple to implement, its application to realistic 3D applications is

made difficult by the fact that sophisticated algorithms are often necessary to deal with prob-
lems with many regions.

5.1 Parallel algorithm
At the solver level, each processor takes control of batches of tracks to accumulate contribu-

tions to average angular fluxes; a partial sum of flux differences is accumulated by region and
energy group in a flux scalar array. At each inner iteration, the processors communicate their
results to all other processes by using a reduce/broadcast procedure. These sums are defined
by

Γpφ
g
j =

1

Σg
jVj

∑

(i,n)∈M−1(p)

ωiπi,n
∑

k

δjNk∆
g
i,n,k; (6)

PHYSOR-2006, ANS Topical Meeting on Reactor Physics

A082 4/9

where φgj is the flux for region j and energy group g. After the reduction operation, at the end
of the inner loop, all processes have the same copy of the scalar flux

φgj =
Qg
j

Σg
j

+

P∑

p=0

Γpφ
g
j . (7)

Figure 1: The reduction process used for a generic MoC parallel solver.

Partial ppn Reduction sync. process

New fission sources and incoming currents

Guess scattering sources

Compute flux per energy group

Compute integral values

[No inner

convergence]

[No outer

convergence]

PartialFluxOnPPN

SingleFluxImage

Figure 1 describes the reduction process that is used in MoC parallel solvers. The main idea
is to distribute the tracks over processors. In the case of hybrid machines, each node can have
more that one processor, and we speak of ppn: processors per node. The minimal requirements
to obtain local angular flux values over each processor of a node are that:

• each processor generates (or read) a part of the tracking data, that is a collection of
characteristics that covers part of the domain;

PHYSOR-2006, ANS Topical Meeting on Reactor Physics

A082 5/9

• each processor generates (or read) the cross-section data, here multigroup cross sections,
pertinent to the regions covered by its collection of chararacteristics.

Figure 2 shows all data needed by a processor in order to participate to a MoC parallel cal-
culations. Calculations of new fission sources and currents, as well as scattering from other
groups, need a multigroup flux map that is consistent for every node. This parallel process of
reducing every local angular fluxes into a single flux image made available for next iteration of
the solver is an heartbeat algorithm.

Figure 2: Minimal requirements for a generic heartbeat-like MoC solver.

Processor Node Data

MacroLib TrackingData

GroupData PartialTD

LocalAngularFlux

FluxUnknown

1

1..*

1

1..*

Additive reduction

PHYSOR-2006, ANS Topical Meeting on Reactor Physics

A082 6/9

5.2 Putting it all together
In the last year, recent advances have been done on the parallelization on hybrid machines. [6]
These parallel machines are composed of nodes with more than one processor. For newer ar-
chitecture containing nodes with several processors (like cluster of SMPs), the communication
overhead function must take into account the two mechanisms used for the communication:

• the shared memory when processors belong to the same node;

• the network communication when the processors belong to the different nodes.

Let us assume that there areM processors per node and that the total number of processors in
the parallel machine is P . If the recursive doubling algorithm for communications is applied,
the first logM communication steps will not involve message passing between nodes. Thus,
the communication overhead function is

T0 = P (logP − logM) Λcomm,Net + P (logM)Λcomm,sh; (8)

where parameters Λcomm,Net and Λcomm,sh are linear functions expressing a single reduction
message using the network and the shared memory respectively. These linear functions have
slopes related to the problem size (in fact, the length of the multigroup flux vector) and constant
latency term.

5.3 Performance tests for parallel MoC
The efficiency of the parallel system is given by

E =
S
P

=
Tseq

PTpar(P)
(9)

where S is the speedup for P processors, Tseq is the sequential time and Tpar(P) is the parallel
time. After neglecting second order terms, it is possible to show that the efficiency, for a given
architecture, can be approximated by:

E ∼ 1

1 + P dlogP e/D . (10)

where D represents the domain dimensionality. [6] This dimensionality parameter obviously
depends on the problem size (number of regions and external surfaces) and the number of
tracks, but also on the ratio of calculation time and communication time at each iteration.

Here we are interested on performance tests on different hybrid machines. For those tests, we
use the following hybrid machines:

• Charybde : 32-bit cluster of SMPs composed of 8 QuadXeon multiprocessors, each of
these 8 nodes has 4 processors sharing a 4 GB memory. Nodes are connected with a
Myrinet switch.

• Hydra : 64-bit cluster NUMAs composed of 32 nodes, each node has two AMD Opteron
processors (2 GHz) sharing 5 GB memory. Nodes are connected with Myrinet Fiber.

In Table 2, results are given for MoC problems of similar dimensionality (although the num-
ber of tracks was almost doubled between D = 49747 and D = 55720). These results show
that similar dimensionality leads to similar efficiencies; the efficiency model seems to work

PHYSOR-2006, ANS Topical Meeting on Reactor Physics

A082 7/9

Table 2: Measured efficiencies for two test cases of similar dimensionality

Performance test Number of processors
Machine D 2 4 8 16 32
Charybde 49747 99.1% 97.2% 90.8% 80.4% 60.2%
Charybde 55720 99.1% 96.4% 89.7% 80.1% 60.7%

Hydra 28291 99.4% 93.8% 87.4% 71.2% 52.6%
Hydra 31687 99.5% 94.3% 84.8% 67.7% 48.2%

well. When comparing both hybrid machines, one can see that the efficiencies obtained with
Hydra are smaller than those obtained with Charybde, this can be explained by the imbalance
between the computational power (greater by a factor of 5) and the network parameters (almost
the same). The dimensionality on Hydra is about 57% less than the one in Charybde due to
this imbalance.

5.4 Characteristics on the fly
Recently, a new approach was taken to deal with the issues of using large-scale HPC servers

for scalable deterministic transport MoC solvers. When tracks are stored in files, these must be
read at each iteration. The MCI parallel algorithm assumes that the tracks are available in files.
The main scalability problem for large-scale problems is to store and access a large number of
characteristics.

The MCG parallel algorithm computes characteristics (that is track lengths and zone numbers
crossing the domain) on the fly at each iteration step. In Table 3, efficiencies for both MCI
and MCG algorithms are compared. Although the global CPU time spent in MCG is larger than
in MCP, the tracks recalculation has little effect on the efficiencies. This means that MCG is a
scalable parallel MoC solver with no I/O bound.

Table 3: Measured efficiencies for MCI and MCG with same problem dimensionality.
Machine is Charybde

Performance test Number of processors
Code D 2 4 8 16 32
MCI 55720 99.1% 96.4% 89.7% 80.1% 60.7%
MCG 55720 99.1% 95.9% 89.2% 79.8% 60.1%

PHYSOR-2006, ANS Topical Meeting on Reactor Physics

A082 8/9

6. Conclusion
The aim of this paper was to present the current state of MoC parallel algorithms, under the

hypothesis that the code is kept as portable as possible with regard to different types of parallel
machines. Shared memory multiprocessors are now standard nodes in high performance com-
puter clusters and network media are faster than ever. Numerical results were thus given for
two hybrid shared/distributed memory parallel computer architectures. These results show that
it is possible to accurately predict the performance of such algorithms by using the problem di-
mensionaly. Such scalability prediction is very important in order to select the optimal cluster
architecture for future industrial large-scale transport calculations.

Acknowledgements
This work has been carried out partly with the help of grants from the Natural Science and

Engineering Research Council of Canada. The author would also like to thank Mohamed
DAHMANI and Louis-Alexandre LECLAIRE for their help in collection data.

References
1) J.R. Askew, “A Characteristics Formulation of the Neutron Transport Equation in Com-

plicated Geometries,” Report AEEW-M 1108, United Kingdom Atomic Energy Establish-
ment, Winfrith (1972).

2) G.J. Wu and R. Roy, “A New Characteristics Algorithm for 3D Transport Calculations,”
Ann. Nucl. Energy 30, 1-16 (2003) and “Acceleration Techniques for Trajectory-based
Deterministic 3D Transport Solvers,” Ann. Nucl. Energy 30, 567-583 (2003).

3) G. Marleau, A. Hébert and R. Roy, “A User’s Guide for DRAGON. Version 3.05,”Report
IGE-xxx, École Polytechnique de Montréal (2005).

4) M. Dahmani, R. Roy and J. Koclas, “Parallel Distribution of Tracking for 3D Neutron
Transport Calculation,” Int. Conf. on Nuclear Mathematical and Computational Sciences,
on CD-ROM, Gatlinburg, Tennessee (2003).

5) M. Dahmani, R. Le Tellier, R. Roy and A. Hébert, “An efficient Preconditioning Technique
using Krylov Subspace Methods for 3D Characteristics Solvers,” Ann. Nucl. Energy 32,
876-896 (2005).

6) M. Dahmani and R. Roy, “Solving Three-Dimensional Large-Scale Neutron Transport
Problems using Hybrid Shared-Distributed Parallelism and Characteristics Method,” sub-
mitted to Nucl. Sci. Eng. (2006).

PHYSOR-2006, ANS Topical Meeting on Reactor Physics

A082 9/9

	PHYSOR-2006 Program
	Author Index
	Session A08
	New Algorithms for 3D Characteristics Solvers
	Abstract
	1. Introduction
	2. MoC basic equations
	2.1 The characteristics formulation of the transport equation
	2.2 Link with the collision probability formulation

	3. Acceleration techniques for MOC solvers
	3.1 preconditioning
	3.2 Combining GMRES with SCR

	4. New features of HPC architectures
	4.1 Going from 32-bit to 64-bit architectures
	4.2 Shared memory computers
	4.3 Distributed computers
	4.4 High-performance networks

	5. Parallel algorithms for MoC solvers
	5.1 Parallel algorithm
	5.2 Putting it all together
	5.3 Performance tests for parallel MoC
	5.4 Characteristics on the y

	6. Conclusion
	Acknowledgements
	References
	Equations
	(1)
	(2)
	(3)
	(4)
	(5)
	(6)
	(7)
	(8)
	(9)
	(10)

	Tables
	Table 1: Number of iterations for different scattering ratio
	Table 2: Measured ef ciencies for two test cases of similar dimensionality
	Table 3: Measured ef ciencies for MCI and MCG with same problem dimensionality. Machine is Charybde

	Figures
	Figure 1: The reduction process used for a generic MoC parallel solver.
	Figure 2: Minimal requirements for a generic heartbeat-like MoC solver.

