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Abstract 
A new evolutionary search based approach for solving the nuclear reactor 

loading pattern optimization problems is presented based on the Estimation of 
Distribution Algorithms. The optimization technique developed is then applied 
to the maximization of the effective multiplication factor (Keff) of the Imperial 
College CONSORT research reactor (the last remaining civilian research reactor 
in the United Kingdom). A new elitism-guided searching strategy has been 
developed and applied to improve the local convergence together with some 
problem-dependent information based on the ‘stand-alone Keff’ with fuel 
coupling calculations. A comparison study between the EDAs and a Genetic 
Algorithm with Heuristic Tie Breaking Crossover operator has shown that the 
new algorithm is efficient and robust. 
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1. Introduction 
The main goal of Nuclear Reactor Loading Pattern Optimization (NRLPO) problem in 

commercial nuclear reactors is to search for ‘profitable’ Loading Patterns (or LPs) of fuel 
assemblies which maximize the performance of the reactor subject to a number of safety and 
operational constraints. The optimization schemes depend on the type of reactor being modeled, 
operational and safety rules, fuel inventory, economic factors etc. At the Imperial College  
Reactor Center (ICRC), the main motivation is to extend the operable life time of the reactor (the 
CONSORT reactor) with the existing fuel inventory, available from the 1960s and 70s, to carry out 
research [1] and provide services for industry [2]. In this work, an optimization study has been 
carried out to maximize the excess reactivity of the CONSORT reactor core with the fuel 
inventory available at present (year 2006) using the Estimation of Distribution Algorithms (EDAs) 
[3]. An innovative application of heuristic information for NRLPO problems based on the 
stand-alone Keff with fuel coupling has been developed and applied in the optimization study and 
the results are compared against the previously published Genetic Algorithm (GA) with Heuristic 
Tie Breaking Crossover (HTBX) operator [4]. 
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A brief description of this study which maximizes the Keff of the CONSORT reactor of ICRC is 
presented, as well as the calculation of problem-dependent heuristic information, the stand-alone 
Keff with fuel coupling. A fast Keff predictor using Artificial Neural Networks (ANNs) has been 
constructed and is presented. The use of ANNs has enabled the optimization to be carried out very 
rapidly (in terms of CPU time), replacing the EVENT [5] code used for core physics calculations, 
which also provided accurate predictions. The framework and implementation of the EDAs as 
applied to the Keff maximization study are presented followed by the results and conclusions. 
 
2. A Test Case: Imperial College CONSORT Research Reactor 

2.1 Core Plan and Fuel Store 
In order to demonstrate the application of EDAs to NRLPO problems, a test case was set up to 

maximize the Keff of the CONSORT reactor given the store of fuel elements available at the ICRC. 
A new core state representing the reactivates of the fuel elements approximately extrapolated to 
present time (2006), has been constructed based on the fissile mass estimations. The reactor 
physics code WIMS8A[6] was used to obtain the multi-group constants which are then used in 
the 3D homogenized EVENT computational model. A hypothetical core state was previously 
studied to test the optimization algorithms developed which can be found in [7]. For detailed 
reactor information, contact reactor.centre@imperial.ac.uk. 

The core plan showing the EVENT model and fuel channel numbering of the CONSORT 
reactor is shown in Fig.1. There are 24 fuel channels in the core. Each box in Fig.1 (left) 
represents a fuel channel, indexed by the number inside. There are four control rods, rod no.1, 2, 3, 
and 4, in the core as shown in Fig.1 (left). Note that the rod no.3 and no. 4 are not included in the 
EVENT model because they act as shut down rods to ensure the emergency safety. Meanwhile, 
rod no. 1 and 2 are fully inserted in EVENT model. 
 
Figure 1: A plan view of the Imperial College CONSORT reactor showing the element positions 

(left) and the computer model developed using EVENT (right). 
 

 
 
 
 
 
 
 
 
 
 
 

 
The fuel inventory consists of 35 fuel elements in this study. The fuel elements are ranked by 

their infinite multiplication factors, K∞, and the ranking number is then used as their IDs in the 
algorithm, see Table 1. An important hard constraint is that Fuel Element10 and Fuel Element.11 
(see Table 1) must always be inserted into channel 6 and channel 15, shown in Fig. 1, due to safety 
and operational constraints. Given the core plan, the fuel store and the constraints, the size of the 
search space can be evaluated, and approximately is . It should be noted that the fuel 292.2 10×
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elements orientation is not included in the EVENT model for Keff calculation and therefore is 
eliminated from this optimization study.  

2.2 The stand-alone Keff with fuel coupling 
The K∞ is a very important reactor physics parameter in ranking the fuel elements in terms of 

their reactivates for fuel management optimization calculations. However, K∞ does not give any 
spatial information about where a fuel element should be inserted into the reactor core. For 
optimization purposes, the 'coupling' of a fuel element at different positions in the reactor core 
with other fuel elements is very useful and can be used as heuristic information. A new method is 
proposed to address the spatial effects based on the calculation of the stand-alone Keff with fuel 
coupling. The method involves insertion of a fuel element j in channel i, and filling all other 
channels with a 'generic' fuel m. Performing this for each fuel element, an LP is then created and 
examined by the simulation software EVENT to obtain its Keff. This result is recorded as the 
stand-alone Keff with fuel coupling information for fuel j when it is inserted in channel i. This 
calculation can be repeated for all the fuel elements and all the channels, the results can be 
presented in a 24x35 matrix. Each entry [i, j] of this matrix represents the 'spatial contribution' of 
assigning fuel j to channel i in a more 'realistic' context, compared to using K∞ information only. 
The use of the stand-alone Keff with fuel coupling in optimization will be described in the 
following sections. 

Table 1: The K∞’s calculated using WIMS for the fuel elements present in the store. 

K∞ 1.5222 1.5249 1.5418 1.5443 1.5257 1.5159 1.5313 
Rank 22 20 13 12 18 31 15 
K∞ 1.5285 1.5259 1.5329 1.5183 1.5175 1.5162 1.5167 

Rank 16 17 14 23 25 30 28 
K∞ 1.5151 1.5167 1.5131 1.5169 1.5176 1.5175 1.5247 

Rank 32 29 33 27 24 26 21 
K∞ 1.5251 1.1312 0.7741 1.6038 1.6085 1.6666 1.6651 

Rank 19 34 35 11 10 6 9 
K∞ 1.6660 1.6653 1.6786 1.6785 1.6738 1.6756 1.6777 

Rank 7 8 1 2 5 4 3 

2.3 An ANN for fast Keff evaluation 
A three-layer feed forward ANN is used to provide fast Keff predictions which was then used to 

mimic EVENT results (Keff s). Each EVENT 3D calculations in six-energy groups took about 20 
minutes CPU time, but this step was performed using the ANN in a fraction of a second. ANNs 
can be used provided that the network is properly trained and tested which of course require 
additional analyst’s effort [9]. The ANN simulator used here has 22 input nodes representing the 
22 fuel channels, since the Channel 6 and Channel 15 have to be filled only with Fuel Element 10 
and 11, respectively. The input nodes are fully connected with 44 hidden nodes. There is 1 output 
node for the predicted Keff. The number of hidden nodes was chosen by the 'trial and error' 
experiments [8]. Stuttgart Neural Network Simulator (SNNS) [8] is used for constructing and 
training the proposed ANN. 

A total of 2025 different LPs are generated randomly and their Keff ‘s are calculated by EVENT. 
A subset of 1620 of them was used for training, 202 for validation and 203 for testing of the ANN. 
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The input data for the ANN used for training the network are not the fuel elements ID but an 
exponential rescaling of their corresponding stand-alone Keff with fuel coupling. For example, an 
LP representing the channels 1 to 3:  

]9,7,15[=X                                    (1) 
which means fuel channel 1, 2, and 3 are loaded with Fuel Element 15, 7, and 9, respectively. 
From the calculated stand-alone Keff  table we have that Keff [15,1] = 1.00971, Keff [7,2] = 0.99532 
and Keff [9,3] = 1.00870, applying an exponential scalar (f_=or _e8x_ample, 20), the input is 
transformed to: 

]18920.1,91045.0,21320.1[]00870.1,99532.0,00971.1[' 202020 ==X         (2) 
Doing this, the variance is rescaled and this helps the ANN to recognize different LPs during the 
training. The input vector X’ is then normalized between [0,1], and the corresponding Keff is 
normalized between [0.3,0.7]. Using the trained ANN, the Keffs of 1000 LPs can be predicted 
within a second with estimated errors of 0.128% of EVENT calculations on average. The same 
number of LP evaluations by EVENT take a CPU week on the same machine (Intel Xeon 2.8 
GHz). The results from the testing of the ANN are given in Table 2.  
 
Table 2: The results from the testing of the ANN to predict Keff . The Error is represented by the 
absolute error between ANN and EVENT over EVENT calculation. 
 

LPs Set Total No. 
LPs Error< 0.1% Error<0.5% Error<1% Average Error 

Training Set 1620 1535 1611 1620 0.13% 
Unseen Test Set 203 194 203 203 0.13% 

 
3. Application of EDAs to Reactor Loading Pattern Optimization 

3.1 An Introduction to EDAs 
3.1.1 Problem Representation 

EDAs are a class of algorithms, which can be regarded as a subset of the Evolutionary 
Algorithms (EAs). In EAs, a dynamically changing population of solutions is maintained during 
the search. GAs are also a subset of EAs. In standard GAs, partial solutions are extracted from 
some known solutions and recombined using the crossover and mutation operators. In EDAs, a 
probability distribution model of ‘promising solutions’ is sampled to generate new solutions. This 
model is then dynamically updated by the newly sampled solutions.  

Some of the key points in EDAs are the representation of the solutions, the probability model 
and the methods to update and sample this model. A straightforward method of LP representation 
is using the Permutation Representation (PR). The PR is an integer vector which contains a 
permutation from 1 to n, indicating the assignment of fuel elements to positions. This is used in 
the benchmark GA implemented for the comparison study. The complexity of dealing with PR is 
O(n). Note that, the n positions include the in-core fuel channels and the positions to store the 
out-of-core fuel elements so that the full search space can be explored.  

An alternative representation is a binary matrix encoding, which is used in our EDAs. An LP is 
represented by a binary matrix with 35 rows and 35 columns. Each row represents an in-core fuel 
channel or an out-of-core position to store a fuel element which is not presented in this LP. Each 
column of this matrix represents 1 of the total 35 different fuel elements. The entry [i, j] is set to 1 
if and only if fuel channel i is loaded with fuel element j. Otherwise it is equal to 0. Note that 

PHYSOR-2006, ANS Topical Meeting on Reactor Physics

C151     4/10



 

because one channel can only be occupied by one fuel assembly, each row, and each column can 
only have one '1' element at a time.  

Given the binary matrix representation, EDAs complexity has to be up to O(n2). However, for 
NRLPO problems, the reactor simulation for evaluating LPs is so expensive in term of 
computational time that the cost of using complicated searching algorithms can be ignored. 

 
3.1.2 Probability Model of Promising Solutions 

EDAs explore the search space systematically by introducing a probability distribution 
probability model, which records the estimated distribution of promising solutions, and therefore 
is used to sample more solutions.  

The structure of the probability model is identical to the LP representation, which is a 35 by 35 
matrix, but it contains real-value numbers between [0,1]. The entry [i,j] represents the probability 
of loading fuel element j to channel i for a promising (or acceptable) LP.  

Using a distribution model one can easily control and guide the search process by looking into 
the model and perturbing it if necessary. The method to sample and update the probability model 
will be explained in sections 3.1.3 and 3.1.4, respectively. 

 
3.1.3 Generating New Solutions by Sampling a Probability Model 

To illustrate how to generate an LP from a distribution model we consider an example with 
four fuel elements. First, we randomly choose a fuel channel, and take the corresponding row.  

]4.0,3.0,2.0,1.0[][ =iP                              (3) 
Second, we calculate the corresponding cumulative vector, and generate a random number r in 

[0, 1] with uniform distribution (e.g. r = 0.5)  
5.0],1,6.0,3.0,1.0[][ == riP c                          (4) 

Finally, r is compared to each entry of P[i]c until r<P[i,j]c. The resulting j is chosen as the fuel 
element ID to be loaded in channel i. 

]0,1,0,0[][ =iLP                                 (5) 
This process is repeated until all the channels are properly loaded. Because each fuel element 

can only be used once, a candidate fuel elements list can be used in this procedure to ensure the 
validity of the generated LP. 

 
3.1.4 Updating the Probability Model 

In order to find more promising solutions, the probability model should be updated using the 
previously built model and some good individuals (solutions) in the current population. Let us 
assume there are three good LPs, LP1, LP2 and LP3, and the previously built model P P

(t). We can 
update P(t)

P  to P(t+1) channel by channel. First, channel i is chosen randomly, and X[i] is the sum of 
LP1[i], LP2[i] and LP3[i]. 

]0,2,1,0[][];0,1,0,0[][3];0,0,1,0[][2];0,1,0,0[][1 ==== iXiLPiLPiLP     (6) 
Second, X[i] is normalized so that all entries are in the range [0, 1] and sum to 1. 

]0,67.0,33.0,0[][ =niX                           (7) 
Finally, PP

(t)[i] and X[i]  is combined together to form the updated model Pn
(t+1)[i]. In this work, we 

used the method from the Population Based Incremental Learning algorithm [3]. 
                      (8) n

tt iXiPiP ][][)1(][ )()1( ⋅+⋅−=+ αα
In which α is a scalar between [0, 1] . This process is repeated for each row of P(t) to generate a 
fully updated P(t+1). 
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3.1.5 The Algorithm 

The main steps in a EDA are: 
1. Initialize the probability distribution model with uniform distribution. 
2. Sample the probability distribution model using the method described in section 3.1.3 to 

generate LPs population. A swap mutation operator [10] is then applied to the new 
population. 

3. Select some LPs according to their Keff using a 2-person tournament selection method. 
4. Update the probability model using the selected individuals from the previous probability 

model, as described in section 3.1.4. 
5. If maximum number of LP evaluations (100,000, for example) is not met, go back to 2, 

otherwise end the search. 

3.2 EDA_G: A General EDA with a New Elitism Strategy 
Genetic Algorithms perform very well in locating a population which contains promising 

solutions but often fail to find the local optimum. This is also a common problem of many other 
population-based algorithms. An EDA with a modified probability model, EDA_G, has been 
developed to improve the local convergence. 

bn
tt XXPP ⋅+⋅+⋅−=+ ηαα )()1( )1(                          (9) 

In equation (9), Xb represents the best solution found during the search and η is a scalar 
dimensionless factor. This term perturbs the probability model in the direction of the best known 
solution. It drives the whole population to move towards an area of search space where the current 
best is at its centre. If this is not applied the search will be performed only in the local area of the 
current best. The value of η has to be tuned carefully so that the search is not trapped in local 
optima. A random perturbation operator, such as a conventional mutation, has been suggested to 
be applied [10] as it can also help the global search. The values of the parameters used in equation 
(9) are presented in Table 3, these are derived from numerical experiments carried out for the 
present study. 

3.3 The EDA_H: The EDA_G Algorithm Combined with Heuristics 
In order to obtain better solutions and faster convergence, the EDA_G is combined with the 

stand-alone Keff with fuel coupling data produced earlier. The resulting algorithm is referred to as 
EDA_H. The EDA_H algorithm is identical to EDA_G except that it samples the new population 
of LPs using the probability model, together with this heuristic information. The sampling 
probability is given by: 

β],[],[],[' jiHjiPjiP ⋅=                              (10) 
Where in equation (10) H contains the heuristic information, β is an exponential scalar adjusting 
the weight between the population based learning and the heuristic information. H has identical 
structure to P. The entry H[i, j] is the calculated stand-alone Keff obtained from loading of fuel j to 
channel i with other channels filled with a generic fuel element as described in section 2.2 . A 
larger H[i, j] value increases the probability of loading fuel j to channel i.  

The inclusion of the heuristic information can be explained as follows. The probability of 
assigning a fuel element j to a fuel channel i depends on how often this assignment occurred in 
some known good LPs (positive), which is recorded in P, and its corresponding stand-alone Keff 
with fuel coupling (positive). The stand-alone Keff can be considered as a measurement of the 
'contribution' of this assignment to the objective function, which is the maximization of Keff. A 
larger H[i, j] encourages the algorithm to generate more LPs with fuel j assigned to channel i. 

PHYSOR-2006, ANS Topical Meeting on Reactor Physics

C151     6/10



 

The stand-alone Keff with fuel coupling can be used directly in this way. In the case that the 
variance of different assignments of fuel elements to channels is too small even when a large β 
has been used, our suggestion is to use the ranked stand-alone Keff matrix instead of the original 
one. The total  entries in the original stand-alone K8403524 =× eff matrix are ranked from 1 to 
840, which represent the relative contribution of all the possible assignments of fuel elements to 
fuel channels. We have used this method in this work. Unacceptable assignments (e.g. assigning 
Fuel Element 10 to any channel which is not channel 5) should not be included in this ranking as 
it will disturb the effect of the stand-alone with fuel coupling. 

It should be noted that useful heuristic information like the stand-alone Keff with fuel coupling is 
not always available and its values are highly reactor dependent and should be calculated a priori. 
So the calculation of the heuristics is problem-dependent, but the method of incorporating it into 
EDAs in the form described above can be generalized.  

4. Results 
GAs have been applied to NRLPO problems by many researchers and technologists [4] [7] [9] 

[11 to 14]. A very good summary addressing the NRLPO problem can be found in [15]. One of 
the successful algorithms is the GA with the HTBX operator, which has been applied to 
Pressurized Water Reactor (PWR) reloading optimization problem [4]. For this reason, we coded 
this algorithm (GA_HTBX) as the ‘benchmark’ algorithm for comparison with the results from 
the new EDA algorithms. The details of the HTBX operator can be found in [4], and are not to be 
presented here. 

It should be noted that the performance of GAs and EDAs can be sensitive to the values of their 
control parameters. We have tuned the parameters used in the GAs and EDAs carefully to ensure 
the validity of the comparison. The parameters used are summarized in Table 3. Figure 2 shows 
the scalar flux contours calculated by 3D EVENT calculations for the fast and the thermal fluxes 
for a candidate LP investigated.  

Numerical results after 100,000 LP evaluations are given in Table 4. For all EDAs and GAs, 
the best solution found in each generation was recorded, and their average values from 30 
independent runs have been illustrated in Fig.3, which also shows the maximum and minimum 
objective function values (error bounds) found among 30 independent runs of EDA_H and 
GA_HTBX. 

It has found that EDA_G and EDA_H algorithms both provided better solutions than 
GA_HTBX, as well as better averaged best solutions found over 30 independent runs. The 
standard deviations also suggest that both EDAs converge more quickly than GA_HTBX. 

 
Table 3: The well-tuned parameters settings used in EDAs and GAs (α, β and η are described in 
equations (9) and (10)) 

Algorithms Population 
Size 

Maximum 
Generations α β η Mutation 

Rate 
Crossover 

Rate 
EDA G 50 2000 0.01 N/A 0.01 0.05 N/A 
EDA H 50 2000 0.01 2 0.01 0.05 N/A 

GAs 50 2000 N/A N/A N/A 0.05 0.9 
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Figure 2: The 3D fast flux (left) and thermal flux (right) contours obtained from EVENT 
calculations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4: The maximum Keff found by EDAs and GAs from 30 independent runs and their 
corresponding averages and standard deviations 
 Algorithms Best Average Standard 

Deviation 
EDA_G 1.007480 1.007459 0.000039 
EDA_H 1.007480 1.007477 0.000016 

GA_HTBX 1.007400 1.007151 0.000221 

 
 
 
 
 
Figure 3: Results from Keff maximization of the CONSORT reactor comparing the performance of 
EDAs against the GA with HTBX operator. 
 

 

 

 

 

 

 

5. Conclusions 
The use of ANN technology has provided extremely fast LP evaluations and enabled sufficient 

optimization experiments to be carried out on the ICRC CONSORT LP optimization. The results 
have shown that EDA based algorithms are very efficient, accurate and robust for the test problem. 
The newly developed stand-alone Keff with fuel coupling has been found to provide very useful 
heuristic information for LP optimization. Both EDAs, with and without heuristic information, 
are regarded as promising approaches for the tested NRLPO problem and worth further 
investigations.  
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