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Abstract 
In an accompanying paper it is shown that theoretically a zero-variance Monte Carlo scheme 

can be devised for criticality calculations if the space, energy and direction dependent adjoint 
function is exactly known. This requires biasing of the transition and collision kernels with the 
appropriate adjoint function. In this paper it is discussed how an existing general purpose Monte 
Carlo code like TRIPOLI can be modified to approach the zero-variance scheme. This requires 
modifications for reading in the adjoint function obtained from a separate deterministic 
calculation for a number of space intervals, energy groups and discrete directions. Furthermore, a 
function has to be added to supply the direction dependent and the averaged adjoint function at a 
specific position in the system by interpolation. The initial particle weights of a certain batch 
must be set inversely proportional to the averaged adjoint function and proper normalization of 
the initial weights must be secured. The sampling of the biased transition kernel requires 
cumulative integrals of the biased kernel along the flight path until a certain value, depending on 
a selected random number is reached to determine a new collision site. The weight of the particle 
must be adapted accordingly. The sampling of the biased collision kernel (in a multigroup 
treatment) is much more like the normal sampling procedure. 

A numerical example is given for a 3-group calculation with a simplified transport model 
(two-direction model), demonstrating that the zero-variance scheme can be approximated quite 
well for this simplified case. 

KEYWORDS: Monte Carlo, zero variance, adjoint function biasing, TRIPOLI, discrete 
ordinates 

 

1.  Introduction 
It is known for a long time that a zero-variance Monte Carlo scheme in a source-detector 

problem can be obtained when the transition kernel for determining a next collision site and the 
collision kernel for determining energy and direction after a scattering collision are biased by the 
appropriate adjoint functions. [1] In an accompanying paper it is shown that a zero-variance 
scheme can also be devised for a criticality calculation to calculate the effective multiplication 
factor keff using successive batches of neutrons to obtain the converged source eigenfunction 
distribution and calculating from each batch the source distribution for the next generation of 
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neutrons. [2] When simulating the nth batch of neutrons with a normalized source distribution 
Sn(P) the estimate of keff after sufficient convergence is obtained from 
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with ψ(P) the neutron collision density at a phase space point P=(r,E, Ω), νΣf  the neutron 
production cross section and Σt  the total cross section. For each batch or generation of neutrons, 
this is in fact running a source-detector problem with νΣf/Σt  as the detector response function. 
 

2.  The TRIPOLI code 
TRIPOLI is a versatile general purpose Monte Carlo code suitable for shielding problems, 

criticality calculations, core physics analysis and instrument studies. Besides neutron transport it 
can also handle photon, electron and positron transport in combined mode. The code is 
developed by Commissariat à l’Energie Atomique, Saclay, France. The latest version TRIPOLI-
4.4 is publicly available from the OECD Nuclear Energy Agency Data Bank. New options are 
regularly added. The code is thoroughly benchmarked against experiments. 

The code is mainly written in C++ and can be run on different computer platforms. It can be 
used with parallel processing. TRIPOLI can handle cross sections in continuous energy given in 
the ENDF/B format and group cross sections with any number of groups. For the resonance 
region probability tables may be used. 

The geometry definition is flexible with options to use predefined bodies in combinatorial 
geometry or to define material volumes by surface equations. A rotating operator is available to 
create specific forms from basic bodies. Repeated structures can be defined in rectangular and 
hexagonal form. The description of sources is especially flexible. All kind of combinations of 
space, energy, direction and time dependent sources can be described, including the possibility to 
use analytical functions to represent the source dependence in any variable. 

TRIPOLI provides a variety of estimators. Standard estimators are available to calculate 
particle fluxes in specified volumes, either with a collision or a track-length estimator, fluxes on 
surfaces or at a point, currents at a surface, but also dose rates, reaction rates using a specified 
response cross section, deposited energy or recoil energy. TRIPOLI also provides a perturbation 
option. 

One of the most important features of TRIPOLI is its possibility to apply particle weighting 
schemes to reduce the variance of estimators. An importance function can be defined for the 
whole space, energy, direction and time domain, supplying a minimum number of input data for 
it. The importance function is used to control the weight of the particle by splitting or Russian 
roulette depending on its position, energy, direction and time. An importance function can also 
be used to bias the transport kernel to direct particles towards a predefined position. 

3. Implementation of the approximate zero-variance biasing in TRIPOLI 

3.1  Reading in the adjoint function 
The adjoint function used for biasing the transition and collision kernels is supposed to be 

derived from a deterministic calculation, probably using an approximate geometry description. 
From a discrete ordinates code run in adjoint mode the adjoint function for particle leaving the 
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source or a collision is obtained in the form 

 
*
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with Nx, Ny, and Nz, the number of mesh intervals in the x, y, and z direction, respectively. Ngroup 
is the number of energy groups and Ndir the number of discrete directions. The adjoint directional 
function is supposed to be given at special mesh boundaries. A discrete ordinates code uses a 
dummy direction with zero weight to start the flux solution. This dummy direction is excluded 
from the adjoint functions read in. Also the mesh sizes and the direction cosines and weights of 
the quadrature set have to be read in. 

The adjoint function as defined above is stored in TRIPOLI as member of a C++ class object 
for defining multigroup cross sections. A class method is defined to calculate the adjoint function 
at a specific space point, energy group and direction by interpolation between the values at the 
neighboring mesh boundaries. The adjoint function averaged over direction is then also 
calculated. 

3.2  Calculating the adjoint function for particles entering a collision 
For biasing the transition kernel to select a new collision site, the zero-variance scheme 

requires the adjoint function ψ* for particles entering a collision as the biasing function. In the 
general case this adjoint function is related to the adjoint function χ* for particles starting a flight 
path as follows: 

 *( , , ) ( , , ) ( , ', ') *( , ', ') ' 'E E C E E E dEψ dψ η χ= + → → Ω∫ ∫r Ω r Ω r Ω Ω r Ω  (3) 

with ηψ the detector response function with respect to the collision density and C the collision 
kernel. For the discretized situation this adjoint function becomes 
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This function is also stored in a C++ class object. 

3.3  Batch initialization 
The energy of neutrons generated by fission are selected from the fission spectrum biased by 

the direction averaged adjoint function χ*. Their direction is selected from the isotropic 
distribution biased by the directional adjoint function. Then their weight must be set inversely 
proportional to the adjoint function for the selected energy group and direction. This requires 
appropriate normalization of the weights of all particles in a new batch. In a multigroup 
treatment the initial weight is set equal to 
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3.4  Biasing the transition kernel 
When a particle starts a flight path the transition kernel must be sampled to select a next 

collision site. According to the theoretical zero-variance scheme this transition kernel must be 
biased by the adjoint function ψ* for a particle entering a collision. Hence, a new collision site 
must be selected from the biased kernel 
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via integration along the flight direction. To determine the integral in the denominator for 
normalization, one has to track the geometry from the last collision site r into the direction Ω up 
to the outer boundary. Using a random number ξ the track length s to the next collision site is 
determined from the solution of 
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with *ψ  the approximated adjoint function, g the energy group where the neutron energy E 
belongs to and Ωm the discrete direction for which the adjoint function is given nearest to the 
actual direction of the neutron flight path. Eq.(7) requires retrieval of the direction and energy 
dependent adjoint functions on many positions along the maximum possible track length and the 
transition kernel biasing is therefore a computational expensive process. 

A weight factor should be applied to the particle weight to compensate for selecting from the 
biased transition kernel equal to 
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with z the number of mean free path between r’and r at energy E. The denominator is already 
calculated when selecting the track length according to Eq.(7). 

3.5  Biasing the collision kernel 

The collision kernel should be biased by the (approximated) adjoint function ~χ* for a particle 
entering a new flight. In a multigroup treatment the energy group g after collision is selected first 
with probability 
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After selection of the new energy group, the direction is selected from the probability 
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with again m indicating the discrete direction nearest to the direction Ω. 
A weight factor should be applied to the particle weight to compensate for selecting from the 

biased collision kernel equal to 
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4.  Numerical example 

 

To test the theory for approximate zero-variance biasing as discussed above we implemented 
the method in a local version of the TRIPOLI-4.4 code for a simplified transport model, namely 
the two-direction model, which allows the particles to move only in the +x or –x directions.[2]  
This model comes very near the normal transport model as far as its simulation in Monte Carlo is 
concerned. Moreover, it can be described by a diffusion-type differential equation, which allows 
an analytical solution for not too complicated systems in order to compare numerical results with 
analytical ones. 

The system used consists of a homogeneous slab of fissionable material. The energy 
dependence is treated in a 3-group approximation, which allows for testing most of the 
theoretical formulas given in Sect. 3. The total cross section for each group was chosen equal in 
order to have the same (converged) spatial distribution for each group, which allows an 
analytical calculation of keff. The 3-group scattering matrix allowed only downscattering. 

The adjoint function χ* was obtained from the one-dimensial SN code XSDRN.[3] A cross 
section library for this code was prepared with the same cross sections as for the Monte Carlo 
runs, except that the material was not fissionable. Unfortunately the adjoint calculation with 
XSDRN did not work out as expected, as the (transposed) scattering matrix was renormalized by 
the code. Therefore, a forward calculation was performed with a cross section set in which the 
scattering matrix was already transposed. As this implies that the scattering cross section for a 
group as the sum of the in-group and out-of-the-group scattering cross sections is no longer equal 
to the original total scattering cross section for that group, there is no balance between the source 
plus in-scatter and the absorption plus out-scatter of particle per group. Nonetheless, the correct 
adjoint function is obtained in this way. 

A reference run with TRIPOLI was done without biasing, starting with a flat source 
distribution. For this run 50 batches of neutrons were simulated in order to have sufficient 
batches with a converged source distribution from which the averaged effective multiplication 
factor can be estimated. Next a run was done with biasing by the adjoint functions. Here too, the 
run was started with a flat spatial distribution. As the convergence of the source distribution is 
faster, only 30 successive batches were done. 

Table 1 shows the results for keff together with the obtained relative standard deviation. The 
values for the multiplication factor are in good agreement with the analytical value of 1.12865.  
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Table 1: Comparison of an unbiased and a biased criticality calculation. 

case keff σ particles 
per batch 

number of 
batches used 

unbiased 1.12808 0.00052 100000 50 
biased 1.12841 0.00023 10000 30 

 
As expected, the standard deviation in the biased run is much lower than that of the unbiased  

run, especially if we take into account that the total number of particles in the latter is much 
bigger. Statistics were calculated over a smaller number of batches in the biased case. This is 
done because in the full transport model, it is expected that the biased case will have a higher 
CPU cost, and therefore it should be able to deliver an improvement over a smaller number of 
batches relative to an unbiased case. 

Fig. 1 shows the convergence rate as far as keff is concerned. One can see that in the biased 
case convergence is reached already after 10 batches, and we can start sampling the statistics. 
Again, note that in order to have comparable results, the unbiased calculation is simulating a 
much larger total number of particles (hence the similar convergence), and still it shows 
fluctuation during the simulation, which is not the case with the biased case. By using a number 
comparable to the biased calculation, the convergence is much slower in terms of batches 
simulated. 

Figure 1: Convergence of keff  over the course of the simulation 

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14

0 5 10 15 20 25 30

Particle Batch

E
ffe

ct
iv

e 
M

ul
tip

lic
at

io
n 

C
on

st
an

t

Biased 
Unbiased
Theory

 
5.  Conclusions and discussion 

The results from the numerical example show that the theory underlying the zero-variance-
based scheme for biasing the Monte Carlo criticality calculation and the application to a 
multigroup case is valid and results in lower standard deviation. As a byproduct, the convergence 
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to the eigenfunction distribution is accelerated, which also saves CPU time. However, no CPU 
times and figures of merit (FOM) are given for our numerical case as the CPU time for the 
biased calculation strongly depends on the implementation details, which were in no way 
optimized in our case. From other tests it was already concluded that also in terms of the FOM a 
big advantage can be obtained in the biased calculation with proper optimization. 

The implementation used so far is still rather limited with the two-direction model. 
Generalization requires the solution of a few practical problems for proper implementation, 
which will be tackled in the near future. 
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