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ABSTRACT 

 
Artificial Neural Networks (ANNs) are applied to in-core fuel management optimisation of Advanced Gas-Cooled 
Reactors operated by British Energy in the United Kingdom to predict various parameters generated by the reactor 
core analysis code PANTHER. ANNs are biologically inspired computational models. Loading Pattern (LP) 
optimisation based on genetic algorithms (GAs) is being used in nuclear reactor fuel management studies, which 
demands substantial CPU times (at least order of weeks on a 866MHz single processor PC) for multi-cycle problems. 
This is due to the assessment and qualification of large number of LPs required to solve an optimisation problem 
with PANTHER. This paper reports on the use of ANNs in predicting core physics parameters to improve the speed 
to obtain optimal candidate LPs. The construction and training of a number of ANNs to accelerate the optimisation 
process are described with the aim of using these networks as surrogate models. The supervised learning method has 
been used to carry out network training. We used three-layered feedforward networks composed of one input, one 
hidden and one output layer with the backpropagation of error algorithm as the learning function. In addition the 
merits of using the scaled conjugate gradient learning algorithm has also been investigated. Several ways of using 
ANNs to accelerate optimisation are presented. Results have shown that ANNs recognise LPs that violate a radial 
power shape constraint and exclude (filter) those LPs from the search. We have demonstrated that ANNs can be used 
as accelerator algorithms within the GA. An attempt has been made to replace the PANTHER code with ANNs to 
perform a full multi-cycle optimisation for two AGR stations, which apply off-load and on-load refuelling. Results 
from these cases have shown orders of magnitude increases in speed.  
 

1. INTRODUCTION  
  
An optimiser, GAOPT [1] based on genetic algorithms (GAs) has been developed for the AGR 
in-core fuel management to predict loading patterns (LPs) cycle by cycle over a refuelling period. 
Fuel management of AGRs is very different when compared to other thermal reactors such as the 
PWRs. The main characteristics from the point of view of LP optimisation that are applied in 
AGR in-core fuel management in the United Kingdom are presented in references [2], [3] and 
will not be described in detail here. We have developed two main algorithms and implemented in 
the code GAOPT applied to two reactors, the first employing on-load refuelling (Reactor A) and 
the second applies off-load refuelling (Reactor B). Main features implemented in the optimiser 
can be summarised as: 
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• Based on a non-generational GA-based algorithm in which children created are 
independent from each other. This algorithm is suitable for parallel computations. 

• Performs multi-cycle LP optimisation for user-defined (variable) batch sizes (number of 
fuel assemblies to be inserted) and allows shuffling of assemblies i.e. relocation of 
assemblies in different reactor channels. 

• Applies station-specific safety and reactor physics constraints, which are listed in Table I. 
A detailed description of constraints is presented in reference [3]. 

• Generates the initial (start-up) population members randomly using a stochastic (Monte 
Carlo) algorithm. 

• Searches through user-defined fuel assembly types (enrichments and burnable poison 
rings). There is no limit on number of assembly types to be included in the search. This is 
entirely left to the user. 

• It is linked to the British Energy reactor analysis code PANTHER [4] to perform fuel 
management calculations. The AGR version of PANTHER is employed, which applies 
power shaping flux calculations as a function of burnup [5]. 

• Depending on the problem, GAOPT offers a number of single objective function 
optimisation to the user. Minimisation of the radial form factor (RFF a parameter similar 
to F∆h in water reactors), or maximisation of the average discharge irradiation can be 
performed. A station-specific function to maximise the profit over a planning period can 
be also used. RFF is defined as the ratio of the peak assembly power in the core to the 
average core assembly power, which normally should be less than the limit of 1.37. 

• Allows shuffling of fuel from outer rings of the core to inner rings, which is the current 
operational practice being applied. The maximum number being controlled by the user. 

 
Application of ANNs to in-core fuel management of PWRs has been performed by Kim et. al. 
[6], [7], [8] and Jang et. al. [9], [10]. In the former work ANNs are constructed to predict BOC 
parameters (assembly powers and keff) a few hundred times faster than the core analysis code. 
Kim and Lee [6] have developed parallel computing adaptive schemes using ANNs for PWRs. 
Jang et. al. have applied optimisation layer by layer (OLL) learning algorithm to predict assembly 
powers, burnup and critical boron concentration in PWRs. To date and to our knowledge no 
attempt has been made to use ANNs in AGR in-core fuel management. For AGRs, a unique 
reactor-dependent approach has to be considered in constructing the database for neural 
networks. We have developed and experimented with this database using PANTHER. A code has 
been written to construct input/output data to be fed into the layers of the network.    
 
We have observed that running GAOPT as stand-alone (without linking it to ANNs) requires 
long CPU times especially for multi-cycle optimisations. This is shown in Table II for a number 
of test cases carried out for the two AGR stations. In these test cases LPs have been assessed 
using a 2D whole-reactor models, which were collapsed by performing a 3D condensation 
calculations using PANTHER. ANNs have been constructed and trained to predict parameters 
used in the optimisation to reduce computation times. In this paper, we describe development of 
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ANNs to AGR reloading optimisation and present the results of our research. The application of 
ANNs has been performed for two AGR stations referred as “Reactor A and Reactor B” to 
demonstrate advantages of their use in core management calculations. In the next section a brief 
description of ANNs is presented, followed by the techniques used to construct and train ANNs 
given in the section 3. In sections 4 and 5 we present results and conclusions respectively. 
 

2. ARTIFICIAL NEURAL NETWORKS FOR IN-CORE FUEL MANAGEMENT OF 
AGRS 

 
Artificial Neural Networks [11] (ANNs) can be described as computational models of the human 
(or mammalian) brain, which represent a branch of Artificial Intelligence. ANNs provide an 
adaptive control of a process by simulating functions of a brain. An ANN contains a layer of 
simple processing elements called input nodes or neurons, a layer of output nodes and a number 
of layers of hidden nodes. This whole system is referred as multi-layer perceptron (MLP). 
Information transfers from node to node like electrical signals pass from neuron to neuron in 
body’s nervous system. An important property of ANNs is the ability to learn. It is this property 
that makes ANNs attractive, which is used to tackle problems that other explicit algorithms take 
long time to solve. ANNs have provided successful algorithms (solutions) in many branches of 
science, engineering, medicine as well as finance, retail and logistics [12].   
 
There are different types of ANNs, a most common type include the multi-layer perceptron 
(MLP), which is generally trained with the backpropagation of error algorithm. Some ANNs are 
classified as feedforward (signals flow from input to output layers) while others are recurrent 
(signals flow both directions between input and output layers) depending on how data is 
processed through the network. Another way of classifying ANN types is by their method of 
learning (or training), as some ANNs employ supervised training while others are referred to as 
unsupervised or self-organizing. During the training stage we used the backpropagation with 
momentum scheme in which the sum squared error E is minimised in a three-layered network 
(see Fig. 1). The formulation below outlines this scheme: 
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In (1), E is calculated for each pattern p, t is the target (supervised) output and y is the calculated 
output by the network given in Fig. 1.Adjusting the weights (Wjk) to minimise E is performed 
using the relationship: 
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where in (2) η is the learning parameter and δi is given by one of the following relationships 
Depending on whether neuron j is a hidden (3) or an output neuron (4): 
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In equation (4) ts is the supervised (target) value for neuron j and netj is the total weighted sum of 
input signals to neuron j. The equation (3) gives the evaluation of weights of hidden neurons (m), 
which are connected to the output of j. Equations (2) to (4) are solved iteratively beginning from 
the output layer by calculating the δ terms and weights for all connections in the network then 
minimising the error function of equation (1). We have used an accelerated backpropagation 
algorithm (BPM), which includes an added momentum term, β to equation (2), giving for 
iteration r as: 
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To perform construction and training of ANNs, we have used the software package called 
Stuttgart Neural Network (SNNS) [13]. The networks created using the SNNS package have been 
linked to the AGR loading pattern optimiser using ancillary software developed specifically to 
perform certain tasks. A set of ANNs is constructed to predict the following parameters that are 
calculated using PANTHER. This is also shown in Fig. 2 as a block diagram. 
  

• Maximum radial form factor in a reactor cycle. 
• Irradiation profile at the end of cycle (EOC). 
• Channel power profile at beginning of cycle (BOC). 
• Total burnup days. 
• Control Rod Balance Constraints. 
 

We have used ANNs in LP optimisation in a number of ways: 
  

• ANN as a filter: ANNs are robust classifiers as they are very good in pattern recognition. 
This property of ANNs is used to identify LPs that have unacceptable radial form factors 
(RFFs) in in-core fuel management of AGRs. 

 
• ANNs to create a random initial population for use in GAs: Optimisation using genetic 

algorithms requires a starting (initial) population to be created. For large population sizes 
ANNs can be used to accelerate this process.  
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• ANNs to duplicate PANTHER predictions (as surrogate models): The ultimate aim of our 
research is to use ANNs as surrogate models. For this reason we have developed ANNs to 
take over the functions of the reactor analysis code (PANTHER) so that all the data 
required by the optimiser can be predicted by a series of ANN software. 

 
 

3.  DEVELOPMENT OF ANNs 
 
We have constructed ANNs that are suitable for two typical AGR cores. In the first type (Reactor 
A) no geometrical symmetry is applied and in the second (Reactor B) rotational symmetric 
loading is applied excepting the central 12 channels. Due to these differences and the size of the 
cores number of input neurons have been varied for each case. The scheme is illustrated in Fig. 3, 
which is also described below: 
(1) Create data-base for training: Channel irradiations BOC and EOC and fresh assembly k∞’s, 
RFF, channel powers (BOC), cycle length and control rod constraints are generated for each LP 
and each reactor, which constitute the database.   
(2) Construction of networks for training: The three layers (input-hidden-output) are constructed 
for each network. The number of neurons in each layer has been changed to adapt the network for 
each reactor type and for the parameter to be predicted. For Reactor A, RFF prediction is carried 
out with a network of (616-200-1), giving number of neurons at each layer. For Reactor B, 
however this was reduced (due to rotational symmetry) to (180-100-1). This system has been 
used to construct ANNs for control rod constraints and cycle-length predictions. An algorithm is 
developed to predict whole-core irradiations (and channel powers) by employing only one eighth 
of the reactor core. It should be noted that a series of try and error networks are constructed in 
which the hidden neurons are varied until an acceptable network is created. In this process 
training time achieved to minimise the error (E) in equation (1) was used as a measure of the 
efficiency of a network. 
(3) Choosing a learning function: The standard backpropagation with momentum (BPM) is used 
as the learning function in all cases. For the RFF prediction, the scaled conjugate gradient method 
(SCG) has also been investigated.  
(4) Train the network: Supervised training has been carried out using the SNNS package for each 
parameter. It was necessary to perform training for at least 5000 patterns. For the case of RFF, it 
was necessary to increase this to about 10000 LPs to improve the accuracy of prediction. 
(5) Testing the networks. After training, networks are created for each parameter and tested 
against the seen (database already included in the training set) and the unseen data (new database 
not included in the training set, untrained data). Performing this step verifies the ANN 
constructed and establishes whether further training is necessary. Figure 4 gives percentage errors 
obtained from testing 1000 LPs for RFF prediction after the ANN is trained using the BPM and 
SCG methods. It was found that SCG method has given better performance as a learning function 
with a penalty of longer training sessions. Figure 5 presents results obtained for the RFF 
prediction, which show the target RFF against those predicted by the ANN for 5000 LPs tested. It 
can be seen that all predictions lie within the ±10% error band. 
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(6) Link (incorporate) the network into the optimiser. When the accuracy achieved testing 
networks on the unseen data is acceptable, ANNs can be used within the optimiser for prediction 
of parameters. We have set the following average limits on the accuracy required from testing 
1000 LPs that are not in the training set for the predicted parameters: RFF: 5-10%, Channel 
powers and irradiations: 10%.  
(7) Testing ANNs: We have tested ANNs that we constructed within the optimiser on realistic 
refuelling optimisation problems and present our results in the following section.  
 
 

4. RESULTS  
 

Results from using ANNs in LP optimisation are presented in tables III to V and in figures 6 to 9, 
which show our findings from the three tests as described below: 
 

• TEST 1 
  
We present detailed results from using ANN as a RFF filter applied to Reactor B in tables III to 
IV and in figures 6 to 8. Table III gives total number of LPs generated with the corresponding 
CPU times from single cycle maximisation of mean discharge irradiation. We observed that using 
ANN as a filter has reduced the number of LPs that has been investigated by about a factor of 2, 
which is given in the three tests for which the population size have been taken as 5, 50 and 75. 
The speedup factors defined as the ratio of CPU times (without ANN over with ANN), which are 
shown in Fig. 6. The drop in speedup factors with increasing the population size has indicated 
that more training is needed, increasing the number of LPs in the training set has increased the 
speedup factors as can be seen in Fig. 6. Table IV presents the reactor physics related parameters 
that are calculated for the best LPs for the three population sizes (small and medium sizes) with 
and without ANN. Results listed in this table show that using ANN leads to acceptable solutions. 
In Fig.7 the profit function versus the average discharge irradiation has been plotted for the 
population size of 50 showing acceptable LPs that are generated using the ANN. Fig. 8 shows 
refuelling positions, which gives the best solution found, when using the ANN as a filter. 
 

• TEST 2 and TEST 3 
 
Table V presents speedup factors obtained using ANNs for Reactors A and B respectively. First 
run represents a single cycle and the second multi-cycle optimisation problem (a more CPU 
demanding problem). For the latter, a factor of 2000 acceleration has been obtained when ANNs 
are used to take over (or perform) functions of PANTHER. Fig. 9 presents channel power 
predictions shown for the quarter core model of an AGR using ANN as ratios of PANTHER 
values divided by ANN predictions. Maximum discrepancy found was 5% for this LP, which 
represent a LP with very high RFF (=2.9) and therefore rejected by the optimiser. For this reason 
higher than normal channel powers has been calculated by the ANN, which compared with 
PANTHER predictions very well. It is shown that LPs of these characteristics can be recognised 
by the ANN and excluded from the GA search. 
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5.  CONCLUSIONS 
 

We have developed and applied ANNs to LP recognition in order to accelerate multi-cycle in-
core fuel optimisation for two AGR stations, which employ on-load and off-load refuelling. Our 
results have shown that benefits of using ANNs in the GA-based optimiser cannot be 
disregarded. Using ANNs as a filter or population generator has accelerated the optimisation and 
produce results (LPs) that are already tested (accurate) by PANTHER. But this cannot be said for 
the results obtained from surrogate models, as there would be some loss of accuracy in the final 
predictions from the surrogate models, which should be finally rechecked by PANTHER, 
depending on the how well ANNs are constructed and trained. We propose that an on-line 
training method should be used whereby surrogate models are trained and tested continuously 
during the optimisation process. By on-line method we mean training, optimisation and testing all 
three being carried out in parallel on multi-processor computers.  
 
We have demonstrated that when ANNs are used to replace PANTHER, they provide speedup 
factors of the order of several thousand for multi-cycle optimisation problems. The loss of 
accuracy in the final predictions is inevitable and may be tolerated for problems demanding very 
high CPU times. In order to train ANNs a suitable database has to be created, which is strongly 
reactor/parameter dependent. This database will be linked to ANN software to perform on-line 
training in GAOPT for AGRs. We plan to investigate on-line training with a built-in error 
estimator to predict LPs using surrogate models only.  
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Table I. The Safety and Operational Constraints Applied by GAOPT 

 
Description of Constraints Limits 

Minimum irradiation limit for refuelling As high as possible 
Minimum irradiation limit for shuffling 15GWd/tU 

Maximum number of radial shuffles  4 (Normally) 
Number of Fuel Assembly types to be 

inserted per cycle 
Reactor Dependent 

(8 to 24) 
Maximum radial form factor (RFF) 

allowed. 
1.37 

Control Rod Balance Constraints Reactor Dependent 
For Reactor B  

mri≥0.6858 , qval≤1.25 
Average control rod insertion limit to 

terminate the cycle EOC (burnup). 
Reactor Dependent 

For Reactor B 
0.26(*) 

 
(*) A description of these limits can be found in reference [14] 
 

Table II. Summary of Execution Times Obtained from Running Single and Multi Cycle Test 
Cases Without Using ANNs, giving Typical CPU times. 

 
Single Cycle: 

 Case 
No 

Reactor 
(AGR) 

LP’s (+)  
Evaluated 

LPs(-) 
Feasible 

Reactor 
Cycles 

Population 
Size 

CPU Times (h) 
(866MHz PC) 

1 Reactor B 7787 50 1 5 10 
2 Reactor B 9781 500 1 50 12 
3 Reactor B 14904 500 1 75 19 

 
 
 
 

Multi-Cycle: 
 Case 

No 
Reactor 

Type 
LP’s 

Evaluated(+) 
LP’s(-) 
Feasible 

Reactor 
Cycles 

Population  
Size 

CPU Times (h) 
(866MHz PC) 

1 Reactor A 63898 40 4 50 88 
2 Reactor B 75034 400 8 50 166 

 
 
 

(+) Total number of LPs investigated by PANTHER  
(-) LPs satisfy all constraints given in Table I. 
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Table III.  Application of ANNs to Single Cycle Optimisation 
 
Population Size/ 
Evaluations (+) 

Using ANN as a filter 
LPs                 CPU(s) 

Without ANN 
LPs                         CPU(s) 

5/50 3918 17987 7787 57663 
50/500 6669 32308 9781 47384 
75/500 6595 30200 14904 68250 

 (+) Number of LPs that satisfy all the constraints 
 

Table IV.  Acceptable LPs Predicted by the Optimiser for Reactor A 
 
Population 

Size 
ANN as a 
Filter ? 

RFF Discharge 
Irradiation

Profit Mri(+) Qval(+) 

5 Yes 1.3518 24.21 0.193344 0.7129 1.1095 
5 No 1.3676 25.31 0.193730 0.7072 1.1615 
50 Yes 1.3343 25.36 0.203050 0.7083 1.2348 
50 No 1.3379 25.98 0.202311 0.7229 1.1403 
75 Yes 1.3557 26.11 0.199306 0.6999 1.1383 
75 No 1.3758 26.07 0.207411 0.7533 1.1213 

(+) These are control rod balance constraints mri is the mean rod insertion and qval is defined 
below. 

j)mrimin(
j)mrimax(

qval =  Where,  j represents grey rods in each quadrant (j =1,2,3,4). 

Here profit is normalised function taking into account the operational and fuel cost requirements 
for each reactor. 
 

Table V. Comparison of CPU Times (s) to Show the Use of ANNs in Fuel Management 
Optimisation of AGRs. Figures in Brackets are the Speedup Factors 

 
Run 
No 

Reactor 
(AGR) 

Without 
ANNs(*) 

ANNs as a 
Filter 

ANNs as 
Surrogate 

Models 

ANNs as a 
Restart 

1 Reactor A 706 
[0.0] 

550 
[1.28] 

45 
[15.69] 

120 
[5.88] 

2 Reactor B 101749 
[0.0] 

2687 
[37.87] 

49 
[2076.5] 

12225 
[8.3] 

 
 (*) This is the base case (Note all cases have been run on 866 MHz PC). 
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Fig. 1. The three-layered feedforward multi-layer perceptron. Here f is the sigmoidal threshold 

function [12] and [13]. 
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Fig. 4. Results from testing the ANNs for RFF prediction when two training functions, 
backpropagation with momentum (BPM) and scaled conjugate gradient (SCG) are used to test 

1000 LPs trained (seen data) and untrained (unseen data). 
 

 
 
Fig. 5. ANN predictions vs the target value for RFF showing the predictions to be within ± 10% 

band. 
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Fig. 6. Using ANN as a filter showing speedup factors obtained against population size. Initial 
training was performed for 2000 patterns, which was further increased to 5000. 

 

 
 
Fig. 7. Maximised Average Discharge Irradiation plotted against the profit function representing 
the final population in the GA after 6669 LP evaluations using ANN and 9781 LP investigations 

without ANN. 
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Fig. 8. Refuelling of LPs Predicted for a Single Cycle Maximisation of Discharge Irradiation 
when using ANN as a filter. Optimisation used 3 types of fuel assembly one for each zone. 

 
 

4.96 
(1.0) 

4.42 
(1.0) 

6.00 
(1.0) 

5.20 
(1.0) 

6.81 
(1.0) 

6.34 
(1.0) 

7.04 
(1.0) 

8.08 
(1.0) 

6.85 
(1.0) 

 4.50 
(1.0) 

5.09 
(1.03) 

5.00 
(1.05) 

6.18 
(1.02) 

9.09 
(1.0) 

7.60 
(1.0) 

7.92 
(1.0) 

4.74 
(1.0) 

6.68 
(1.0) 

6.63 
(1.01) 

10.3 
(1.0) 

9.05 
(1.0) 

11.7 
(1.0) 

7.68 
(1.0) 

7.89 
(1.0) 

5.55 
(0.99) 

5.76 
(1.0) 

8.37 
(1.0) 

11.1 
(1.0) 

13.4 
(1.0) 

11.5 
(1.0) 

10.7 
(1.01 

11.4 
(1.0) 

8.90 
(1.0) 

 6.35 
(1.0) 

6.49 
(0.99) 

6.30 
(1.01) 

10.7 
(0.99) 

12.7 
(1.0) 

13.1 
(1.0) 

11.0 
(1.0) 

7.52 
(1.0) 

8.33 
(1.0) 

7.19 
(0.98) 

6.90 
(1.02) 

7.69 
(0.99) 

7.44 
(0.98) 

10.0 
(1.04) 

9.58 
(1.0) 

11.5 
(0.99 

12.9 
(1.0) 

10.6 
(1.01) 

6.01 
(0.96) 

5.89 
(0.99) 

8.55 
(1.0) 

8.34 
(1.04) 

6.73 
(1.0) 

8.44 
(1.01) 

8.56 
(1.0) 

8.95 
(1.0) 

9.80 
(1.0) 

9.34 
(1.0) 

7.76 
(1.00) 

6.54 
(1.0) 

9.36 
(1.0) 

6.88 
(0.97) 

9.67 
(0.99) 

6.60 
(1.0) 

8.53 
1.0 

6.96 
(0.98) 

6.26 
1.0 

8.23 
(1.0) 

7.32 
(1.01) 

7.24 
(0.99) 

8.03 
(1.0) 

8.46 
(1.02) 

8.18 
(1.0) 

5.68 
(1.02) 

5.55 
1.01 

5.41 
(1.0) 

5.91 
(1.0) 

6.07 
(1.0) 

MW 
(Ratio) 

Key: 

Ratio=PANTHER/ANN 

 
Fig. 9. A Comparison of ANN Channel Power Predictions against PANTHER (Quarter Core 

shown). Note that LP for this case is rejected due to RFF violation. 
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